Suppr超能文献

使用3D打印的镍-聚乳酸-羟基乙酸共聚物催化剂前体通过化学气相沉积法合成三维形状的三维石墨烯

CVD Synthesis of 3D-Shaped 3D Graphene Using a 3D-Printed Nickel-PLGA Catalyst Precursor.

作者信息

Kondapalli Vamsi Krishna Reddy, He Xingyu, Khosravifar Mahnoosh, Khodabakhsh Safa, Collins Boyce, Yarmolenko Sergey, Paz Y Puente Ashley, Shanov Vesselin

机构信息

Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States.

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States.

出版信息

ACS Omega. 2021 Oct 22;6(43):29009-29021. doi: 10.1021/acsomega.1c04072. eCollection 2021 Nov 2.

Abstract

Earlier, various attempts to develop graphene structures using chemical and nonchemical routes were reported. Being efficient, scalable, and repeatable, 3D printing of graphene-based polymer inks and aerogels seems attractive; however, the produced structures highly rely on a binder or an ice support to stay intact. The presence of a binder or graphene oxide hinders the translation of the excellent graphene properties to the 3D structure. In this communication, we report our efforts to synthesize a 3D-shaped 3D graphene (3DG) with good quality, desirable shape, and structure control by combining 3D printing with the atmospheric pressure chemical vapor deposition (CVD) process. Direct ink writing has been used in this work as a 3D-printing technique to print nickel powder-PLGA slurry into various shapes. The latter has been employed as a catalyst for graphene growth via CVD. Porous 3DG with high purity was obtained after etching out the nickel substrate. The conducted micro CT and 2D Raman study of pristine 3DG revealed important features of this new material. The interconnected porous nature of the obtained 3DG combined with its good electrical conductivity (about 17 S/cm) and promising electrochemical properties invites applications for energy storage electrodes, where fast electron transfer and intimate contact with the active material and with the electrolyte are critically important. By changing the printing design, one can manipulate the electrical, electrochemical, and mechanical properties, including the structural porosity, without any requirement for additional doping or chemical postprocessing. The obtained binder-free 3DG showed a very good thermal stability, tested by thermo-gravimetric analysis in air up to 500 °C. This work brings together two advanced manufacturing approaches, CVD and 3D printing, thus enabling the synthesis of high-quality, binder-free 3DG structures with a tailored design that appeared to be suitable for multiple applications.

摘要

此前,已有报道尝试通过化学和非化学途径制备石墨烯结构。基于石墨烯的聚合物油墨和气凝胶的3D打印具有高效、可扩展和可重复的特点,似乎颇具吸引力;然而,所制备的结构高度依赖粘合剂或冰支撑来保持完整。粘合剂或氧化石墨烯的存在阻碍了优异的石墨烯性能向3D结构的转化。在本通讯中,我们报告了通过将3D打印与常压化学气相沉积(CVD)工艺相结合,努力合成具有良好质量、理想形状和结构可控的三维形状的三维石墨烯(3DG)。在这项工作中,直接墨水书写被用作一种3D打印技术,将镍粉-PLGA浆料打印成各种形状。后者已被用作通过CVD生长石墨烯的催化剂。蚀刻掉镍基板后,获得了高纯度的多孔3DG。对原始3DG进行的微观CT和二维拉曼研究揭示了这种新材料的重要特征。所获得的3DG的相互连接的多孔性质,结合其良好的导电性(约17 S/cm)和有前景的电化学性质,使其适用于储能电极,在储能电极中,快速的电子转移以及与活性材料和电解质的紧密接触至关重要。通过改变打印设计,可以在无需额外掺杂或化学后处理的情况下,操控电学、电化学和机械性能,包括结构孔隙率。通过热重分析在高达500°C的空气中测试,所获得的无粘合剂3DG显示出非常好的热稳定性。这项工作将两种先进的制造方法——CVD和3D打印结合在一起,从而能够合成具有定制设计的高质量、无粘合剂的3DG结构,这些结构似乎适用于多种应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cddc/8567395/cca31b7f2d41/ao1c04072_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验