Suppr超能文献

基于可见光光学相干断层扫描的多模态视网膜成像用于改善荧光强度定量

Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification.

作者信息

Nafar Zahra, Jiang Minshan, Wen Rong, Jiao Shuliang

机构信息

Department of Biomedical Engineering, Florida International University, 10555 W Flagler ST, EC-2610, Miami, FL 33174, USA.

Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10 Ave, Miami, FL 33136, USA.

出版信息

Biomed Opt Express. 2016 Aug 4;7(9):3220-3229. doi: 10.1364/BOE.7.003220. eCollection 2016 Sep 1.

Abstract

We developed a spectral-domain visible-light optical coherence tomography (VIS-OCT) based multimodal imaging technique which can accomplish simultaneous OCT and fluorescence imaging with a single broadband light source. Phantom experiments showed that by using the simultaneously acquired OCT images as a reference, the effect of light attenuation on the intensity of the fluorescent images by materials in front of the fluorescent target can be compensated. This capability of the multimodal imaging technique is of high importance for achieving quantification of the true intensities of autofluorescence (AF) imaging of the retina. We applied the technique in retinal imaging including AF imaging of the retinal pigment epithelium and fluorescein angiography (FA). We successfully demonstrated the effect of compensation on AF and FA images with the simultaneously acquired VIS-OCT images.

摘要

我们开发了一种基于光谱域可见光光学相干断层扫描(VIS-OCT)的多模态成像技术,该技术可以使用单个宽带光源同时完成光学相干断层扫描(OCT)和荧光成像。模型实验表明,通过将同时采集的OCT图像用作参考,可以补偿荧光目标前方材料对荧光图像强度的光衰减效应。这种多模态成像技术的能力对于实现视网膜自发荧光(AF)成像真实强度的量化非常重要。我们将该技术应用于视网膜成像,包括视网膜色素上皮的AF成像和荧光素血管造影(FA)。我们成功地通过同时采集的VIS-OCT图像证明了补偿对AF和FA图像的效果。

相似文献

1
Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification.
Biomed Opt Express. 2016 Aug 4;7(9):3220-3229. doi: 10.1364/BOE.7.003220. eCollection 2016 Sep 1.
2
Visible light OCT-based quantitative imaging of lipofuscin in the retinal pigment epithelium with standard reference targets.
Biomed Opt Express. 2018 Jul 23;9(8):3768-3782. doi: 10.1364/BOE.9.003768. eCollection 2018 Aug 1.
4
Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm.
Biomed Opt Express. 2014 Nov 12;5(12):4242-8. doi: 10.1364/BOE.5.004242. eCollection 2014 Dec 1.
8
9
MULTIMODAL IMAGING OF DISEASE-ASSOCIATED PIGMENTARY CHANGES IN RETINITIS PIGMENTOSA.
Retina. 2016 Dec;36 Suppl 1(Suppl 1):S147-S158. doi: 10.1097/IAE.0000000000001256.

引用本文的文献

1
Visible Light Optical Coherence Tomography: Technology and Biomedical Applications.
Bioengineering (Basel). 2025 Jul 17;12(7):770. doi: 10.3390/bioengineering12070770.
2
Integrated visible-light optical coherence tomography and fluorescence scanning laser ophthalmoscopy to image retinal ganglion cell axons.
Biomed Opt Express. 2025 Jun 17;16(7):2847-2856. doi: 10.1364/BOE.561992. eCollection 2025 Jul 1.
3
Visible-light optical coherence tomography and its applications.
Neurophotonics. 2025 Apr;12(2):020601. doi: 10.1117/1.NPh.12.2.020601. Epub 2025 Apr 9.
4
The Perspective of Using Optical Coherence Tomography in Ophthalmology: Present and Future Applications.
Diagnostics (Basel). 2025 Feb 7;15(4):402. doi: 10.3390/diagnostics15040402.
5
Water wavenumber calibration for visible light optical coherence tomography.
J Biomed Opt. 2020 Sep;25(9). doi: 10.1117/1.JBO.25.9.090501.
6
Performance test methods for near-infrared fluorescence imaging.
Med Phys. 2020 Aug;47(8):3389-3401. doi: 10.1002/mp.14189. Epub 2020 Jun 1.
7
Gabor domain optical coherence microscopy combined with laser scanning confocal fluorescence microscopy.
Biomed Opt Express. 2019 Nov 14;10(12):6242-6257. doi: 10.1364/BOE.10.006242. eCollection 2019 Dec 1.
9
Integrated multimodal photoacoustic microscopy with OCT- guided dynamic focusing.
Biomed Opt Express. 2018 Dec 11;10(1):137-150. doi: 10.1364/BOE.10.000137. eCollection 2019 Jan 1.
10
Visible-light optical coherence tomography-based multimodal system for quantitative fundus autofluorescence imaging.
Exp Biol Med (Maywood). 2018 Dec;243(17-18):1265-1274. doi: 10.1177/1535370218813529. Epub 2018 Nov 24.

本文引用的文献

1
Optical coherence photoacoustic microscopy for in vivo multimodal retinal imaging.
Opt Lett. 2015 Apr 1;40(7):1370-3. doi: 10.1364/OL.40.001370.
2
Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm.
Biomed Opt Express. 2014 Nov 12;5(12):4242-8. doi: 10.1364/BOE.5.004242. eCollection 2014 Dec 1.
3
Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography.
Invest Ophthalmol Vis Sci. 2013 Dec 9;54(13):7998-8003. doi: 10.1167/iovs.13-12318.
4
Chemistry of the retinoid (visual) cycle.
Chem Rev. 2014 Jan 8;114(1):194-232. doi: 10.1021/cr400107q. Epub 2013 Jul 11.
5
Visible-light optical coherence tomography for retinal oximetry.
Opt Lett. 2013 Jun 1;38(11):1796-8. doi: 10.1364/OL.38.001796.
7
Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source.
J Biomed Opt. 2012 Aug;17(8):080502-1. doi: 10.1117/1.JBO.17.8.080502.
9
The bisretinoids of retinal pigment epithelium.
Prog Retin Eye Res. 2012 Mar;31(2):121-35. doi: 10.1016/j.preteyeres.2011.12.001. Epub 2011 Dec 22.
10
Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope.
Invest Ophthalmol Vis Sci. 2011 Dec 9;52(13):9379-90. doi: 10.1167/iovs.11-8319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验