Yang Pengcheng, Mykhaylyk Oleksandr O, Jones Elizabeth R, Armes Steven P
Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
Macromolecules. 2016 Sep 27;49(18):6731-6742. doi: 10.1021/acs.macromol.6b01563. Epub 2016 Sep 2.
We report a new nonaqueous polymerization-induced self-assembly (PISA) formulation based on the reversible addition-fragmentation chain transfer (RAFT) dispersion alternating copolymerization of styrene with -phenylmaleimide using a nonionic poly(,-dimethylacrylamide) stabilizer in a 50/50 w/w ethanol/methyl ethyl ketone (MEK) mixture. The MEK cosolvent is significantly less toxic than the 1,4-dioxane cosolvent reported previously [Yang P.; Macromolecules2013, 46, 8545-8556]. The core-forming alternating copolymer block has a relatively high glass transition temperature (), which leads to vesicular morphologies being observed during PISA, as well as the more typical sphere and worm phases. Each of these copolymer morphologies has been characterized by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies. TEM studies reveal micrometer-sized elliptical particles with internal structure, with SAXS analysis suggesting an oligolamellar vesicle morphology. This structure differs from that previously reported for a closely related PISA formulation utilizing a poly(methacrylic acid) stabilizer block for which unilamellar platelet-like particles are observed by TEM and SAXS. This suggests that interlamellar interactions are governed by the nature of the steric stabilizer layer. Moreover, using the MEK cosolvent also enables access to a unilamellar vesicular morphology, despite the high of the alternating copolymer core-forming block. This was achieved by simply conducting the PISA synthesis at a higher temperature for a longer reaction time (80 °C for 24 h). Presumably, MEK solvates the core-forming block more than the previously utilized 1,4-dioxane cosolvent, which leads to greater chain mobility. Finally, preliminary experiments indicate that the worms are much more efficient stabilizers for aqueous foams than either the spheres or the oligolamellar elliptical vesicles.
我们报道了一种基于苯乙烯与对苯基马来酰亚胺的可逆加成-断裂链转移(RAFT)分散交替共聚的新型非水聚合诱导自组装(PISA)配方,该配方使用非离子型聚(N,N-二甲基丙烯酰胺)稳定剂,在乙醇/甲乙酮(MEK)质量比为50/50的混合物中进行。与先前报道的1,4-二氧六环助溶剂相比,MEK助溶剂的毒性要小得多[杨P.;《大分子》2013年,46卷,8545 - 8556页]。形成核的交替共聚物嵌段具有相对较高的玻璃化转变温度(Tg),这导致在PISA过程中观察到囊泡形态,以及更典型的球形和蠕虫状相。这些共聚物形态中的每一种都通过透射电子显微镜(TEM)和小角X射线散射(SAXS)研究进行了表征。TEM研究揭示了具有内部结构的微米级椭圆形颗粒,SAXS分析表明其为寡层囊泡形态。这种结构与先前报道的一种密切相关的PISA配方不同,该配方使用聚(甲基丙烯酸)稳定剂嵌段,通过TEM和SAXS观察到的是单层片状颗粒。这表明层间相互作用受空间稳定剂层的性质控制。此外,尽管交替共聚物形成核的嵌段Tg较高,但使用MEK助溶剂仍能获得单层囊泡形态。这是通过在较高温度下进行更长反应时间(80°C反应24小时)的PISA合成实现的。据推测,MEK对形成核的嵌段的溶剂化作用比对先前使用的1,4-二氧六环助溶剂更强,这导致链的流动性更大。最后,初步实验表明,蠕虫状颗粒对水性泡沫的稳定作用比球形颗粒或寡层椭圆形囊泡要强得多。