Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.
Magn Reson Med. 2017 Sep;78(3):1093-1099. doi: 10.1002/mrm.26499. Epub 2016 Oct 21.
Fast MRI acquisitions often rely on efficient traversal of k-space and hardware limitations, or other physical effects can cause the k-space trajectory to deviate from a theoretical path in a manner dependent on the image prescription and protocol parameters. Additional measurements or generalized calibrations are typically needed to characterize the discrepancies. We propose an autocalibrated technique to determine these discrepancies.
A joint optimization is used to estimate the trajectory simultaneously with the parallel imaging reconstruction, without the need for additional measurements. Model reduction is introduced to make this optimization computationally efficient, and to ensure final image quality.
We demonstrate our approach for the wave-CAIPI fast acquisition method that uses a corkscrew k-space path to efficiently encode k-space and spread the voxel aliasing. Model reduction allows for the 3D trajectory to be automatically calculated in fewer than 30 s on standard vendor hardware. The method achieves equivalent accuracy to full-gradient calibration scans.
The proposed method allows for high-quality wave-CAIPI reconstruction across wide ranges of protocol parameters, such as field of view (FOV) location/orientation, bandwidth, echo time (TE), resolution, and sinusoidal amplitude/frequency. Our framework should allow for the autocalibration of gradient trajectories from many other fast MRI techniques in clinically relevant time. Magn Reson Med 78:1093-1099, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
快速 MRI 采集通常依赖于高效遍历 k 空间和硬件限制,或者其他物理效应可能导致 k 空间轨迹以依赖于图像处方和协议参数的方式偏离理论路径。通常需要额外的测量或广义校准来描述这些差异。我们提出了一种自动校准技术来确定这些差异。
联合优化用于同时估计轨迹和并行成像重建,而无需额外的测量。引入模型简化以提高优化的计算效率,并确保最终图像质量。
我们展示了我们的方法用于波 CAIPI 快速采集方法,该方法使用螺旋形 k 空间路径来高效地编码 k 空间并扩展体素混叠。模型简化允许在标准供应商硬件上自动计算少于 30 秒的 3D 轨迹。该方法达到了全梯度校准扫描的等效精度。
所提出的方法允许在广泛的协议参数范围内进行高质量的波 CAIPI 重建,例如视野 (FOV) 位置/方向、带宽、回波时间 (TE)、分辨率和正弦波幅度/频率。我们的框架应该允许在临床相关时间内自动校准许多其他快速 MRI 技术的梯度轨迹。磁共振医学 78:1093-1099, 2017。©2016 国际磁共振学会。