Suppr超能文献

自动校准波—CAIPI 重建;k 空间轨迹和并行成像重建的联合优化。

Autocalibrated wave-CAIPI reconstruction; Joint optimization of k-space trajectory and parallel imaging reconstruction.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.

Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Magn Reson Med. 2017 Sep;78(3):1093-1099. doi: 10.1002/mrm.26499. Epub 2016 Oct 21.

Abstract

PURPOSE

Fast MRI acquisitions often rely on efficient traversal of k-space and hardware limitations, or other physical effects can cause the k-space trajectory to deviate from a theoretical path in a manner dependent on the image prescription and protocol parameters. Additional measurements or generalized calibrations are typically needed to characterize the discrepancies. We propose an autocalibrated technique to determine these discrepancies.

METHODS

A joint optimization is used to estimate the trajectory simultaneously with the parallel imaging reconstruction, without the need for additional measurements. Model reduction is introduced to make this optimization computationally efficient, and to ensure final image quality.

RESULTS

We demonstrate our approach for the wave-CAIPI fast acquisition method that uses a corkscrew k-space path to efficiently encode k-space and spread the voxel aliasing. Model reduction allows for the 3D trajectory to be automatically calculated in fewer than 30 s on standard vendor hardware. The method achieves equivalent accuracy to full-gradient calibration scans.

CONCLUSIONS

The proposed method allows for high-quality wave-CAIPI reconstruction across wide ranges of protocol parameters, such as field of view (FOV) location/orientation, bandwidth, echo time (TE), resolution, and sinusoidal amplitude/frequency. Our framework should allow for the autocalibration of gradient trajectories from many other fast MRI techniques in clinically relevant time. Magn Reson Med 78:1093-1099, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

摘要

目的

快速 MRI 采集通常依赖于高效遍历 k 空间和硬件限制,或者其他物理效应可能导致 k 空间轨迹以依赖于图像处方和协议参数的方式偏离理论路径。通常需要额外的测量或广义校准来描述这些差异。我们提出了一种自动校准技术来确定这些差异。

方法

联合优化用于同时估计轨迹和并行成像重建,而无需额外的测量。引入模型简化以提高优化的计算效率,并确保最终图像质量。

结果

我们展示了我们的方法用于波 CAIPI 快速采集方法,该方法使用螺旋形 k 空间路径来高效地编码 k 空间并扩展体素混叠。模型简化允许在标准供应商硬件上自动计算少于 30 秒的 3D 轨迹。该方法达到了全梯度校准扫描的等效精度。

结论

所提出的方法允许在广泛的协议参数范围内进行高质量的波 CAIPI 重建,例如视野 (FOV) 位置/方向、带宽、回波时间 (TE)、分辨率和正弦波幅度/频率。我们的框架应该允许在临床相关时间内自动校准许多其他快速 MRI 技术的梯度轨迹。磁共振医学 78:1093-1099, 2017。©2016 国际磁共振学会。

相似文献

3
Wave-CAIPI for highly accelerated MP-RAGE imaging.基于波峰 CAIPI 的高加速 MP-RAGE 成像技术。
Magn Reson Med. 2018 Jan;79(1):401-406. doi: 10.1002/mrm.26649. Epub 2017 Feb 20.
5
Wave-CAIPI for highly accelerated 3D imaging.用于高度加速3D成像的Wave-CAIPI
Magn Reson Med. 2015 Jun;73(6):2152-62. doi: 10.1002/mrm.25347. Epub 2014 Jul 1.
9
Trajectory Auto-Corrected image reconstruction.轨迹自动校正图像重建
Magn Reson Med. 2016 Sep;76(3):757-68. doi: 10.1002/mrm.25916. Epub 2015 Sep 12.
10
Partial fourier shells trajectory for non-cartesian MRI.非笛卡尔 MRI 的部分傅里叶壳轨迹。
Phys Med Biol. 2019 Feb 6;64(4):04NT01. doi: 10.1088/1361-6560/aafcc5.

引用本文的文献

6
Scout accelerated motion estimation and reduction (SAMER).Scout 加速运动估计和减少 (SAMER)。
Magn Reson Med. 2022 Jan;87(1):163-178. doi: 10.1002/mrm.28971. Epub 2021 Aug 13.

本文引用的文献

2
Trajectory Auto-Corrected image reconstruction.轨迹自动校正图像重建
Magn Reson Med. 2016 Sep;76(3):757-68. doi: 10.1002/mrm.25916. Epub 2015 Sep 12.
5
Wave-CAIPI for highly accelerated 3D imaging.用于高度加速3D成像的Wave-CAIPI
Magn Reson Med. 2015 Jun;73(6):2152-62. doi: 10.1002/mrm.25347. Epub 2014 Jul 1.
8
MODEL-BASED IMAGE RECONSTRUCTION FOR MRI.基于模型的磁共振成像图像重建
IEEE Signal Process Mag. 2010 Jul 1;27(4):81-89. doi: 10.1109/MSP.2010.936726.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验