Lega Joceline, Brown Heidi E
University of Arizona, Tucson, AZ, USA.
University of Arizona, Tucson, AZ, USA.
Epidemics. 2016 Dec;17:19-26. doi: 10.1016/j.epidem.2016.10.002. Epub 2016 Oct 11.
Recent events have thrown the spotlight on infectious disease outbreak response. We developed a data-driven method, EpiGro, which can be applied to cumulative case reports to estimate the order of magnitude of the duration, peak and ultimate size of an ongoing outbreak. It is based on a surprisingly simple mathematical property of many epidemiological data sets, does not require knowledge or estimation of disease transmission parameters, is robust to noise and to small data sets, and runs quickly due to its mathematical simplicity. Using data from historic and ongoing epidemics, we present the model. We also provide modeling considerations that justify this approach and discuss its limitations. In the absence of other information or in conjunction with other models, EpiGro may be useful to public health responders.
近期事件使传染病爆发应对成为焦点。我们开发了一种数据驱动方法EpiGro,它可应用于累计病例报告,以估计正在发生的疫情的持续时间、峰值和最终规模的数量级。它基于许多流行病学数据集一个令人惊讶的简单数学特性,不需要疾病传播参数的知识或估计,对噪声和小数据集具有鲁棒性,并且由于其数学简单性而运行快速。我们使用历史和正在发生的疫情数据展示了该模型。我们还提供了证明这种方法合理性的建模考量,并讨论了其局限性。在缺乏其他信息或与其他模型结合使用时,EpiGro可能对公共卫生应对人员有用。