Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
Department of Engineering, University of Cambridge , Trumpington Street, Cambridge, CB2 1PZ, United Kingdom.
ACS Appl Mater Interfaces. 2016 Nov 30;8(47):32120-32131. doi: 10.1021/acsami.6b07797. Epub 2016 Nov 17.
Electrospinning is a versatile technique for the construction of microfibrous and nanofibrous structures with considerable potential in applications ranging from textile manufacturing to tissue engineering scaffolds. In the simplest form, electrospinning uses a high voltage of tens of thousands volts to draw out ultrafine polymer fibers over a large distance. However, the high voltage limits the flexible combination of material selection, deposition substrate, and control of patterns. Prior studies show that by performing electrospinning with a well-defined "near-field" condition, the operation voltage can be decreased to the kilovolt range, and further enable more precise patterning of fibril structures on a planar surface. In this work, by using solution dependent "initiators", we demonstrate a further lowering of voltage with an ultralow voltage continuous electrospinning patterning (LEP) technique, which reduces the applied voltage threshold to as low as 50 V, simultaneously permitting direct fiber patterning. The versatility of LEP is shown using a wide range of combination of polymer and solvent systems for thermoplastics and biopolymers. Novel functionalities are also incorporated when a low voltage mode is used in place of a high voltage mode, such as direct printing of living bacteria; the construction of suspended single fibers and membrane networks. The LEP technique reported here should open up new avenues in the patterning of bioelements and free-form nano- to microscale fibrous structures.
静电纺丝是一种构建微纤维和纳米纤维结构的多功能技术,在从纺织品制造到组织工程支架等应用中具有很大的潜力。在最简单的形式中,静电纺丝使用数万伏的高压将超精细聚合物纤维拉伸到很大的距离。然而,高压限制了材料选择、沉积基底和图案控制的灵活组合。先前的研究表明,通过在明确定义的“近场”条件下进行静电纺丝,可以将操作电压降低到千伏范围,并进一步实现更精确的平面纤维结构图案化。在这项工作中,通过使用溶液依赖的“引发剂”,我们展示了一种进一步降低电压的超低电压连续静电纺丝图案化(LEP)技术,该技术将施加电压的阈值降低到低至 50V,同时允许直接进行纤维图案化。通过使用热塑性塑料和生物聚合物的各种聚合物和溶剂系统组合,展示了 LEP 的多功能性。当使用低电压模式代替高电压模式时,也会引入新的功能,例如活菌的直接打印;悬浮单纤维和膜网络的构建。这里报道的 LEP 技术应该为生物元件和自由形态的纳米到微尺度纤维结构的图案化开辟新的途径。