Gill Elisabeth L, Willis Samuel, Gerigk Magda, Cohen Paul, Zhang Duo, Li Xia, Huang Yan Yan Shery
Department of Engineering , University of Cambridge , Trumpington Street , Cambridge CB2 1PZ , U.K.
The Nanoscience Centre , University of Cambridge , 11 JJ Thomson Avenue , Cambridge CB3 0FF , U.K.
ACS Appl Mater Interfaces. 2019 Jun 5;11(22):19679-19690. doi: 10.1021/acsami.9b01258. Epub 2019 May 24.
Building two-dimensional (2D) and three-dimensional (3D) fibrous structures in the micro- and nanoscale will offer exciting prospects for numerous applications spanning from sensors to energy storage and tissue engineering scaffolds. Electrospinning is a well-suited technique for drawing micro- to nanoscale fibers, but current methods of building electrospun fibers in 3D are restrictive in terms of printed height, design of macroscopic fiber networks, and choice of polymer. Here, we combine low-voltage electrospinning and additive manufacturing as a method to pattern layers of suspended mesofibers. Layers of fibers are suspended between 3D-printed supports in situ in multiple fiber layers and designable orientations. We examine the key working parameters to attain a threshold for fiber suspension, use those behavioral observations to establish a "fiber suspension indicator", and demonstrate its utility through design of intricate suspended fiber architectures. Individual fibers produced by this method approach the micrometer/submicrometer scale, while the overall suspended 3D fiber architecture can span over a centimeter in height. We demonstrate an application of suspended fiber architectures in 3D cell culture, utilizing patterned fiber topography to guide the assembly of suspended high-cellular-density structures. The solution-based fiber suspension patterning process we report offers a unique competence in patterning soft polymers, including extracellular matrix-like materials, in a high resolution and aspect ratio. The platform could thus offer new design and manufacturing capabilities of devices and functional products by incorporating functional fibrous elements.
构建微米和纳米尺度的二维(2D)及三维(3D)纤维结构将为从传感器到能量存储以及组织工程支架等众多应用带来令人兴奋的前景。静电纺丝是一种非常适合用于拉伸微米到纳米尺度纤维的技术,但目前在三维空间中构建静电纺丝纤维的方法在打印高度、宏观纤维网络设计以及聚合物选择方面存在限制。在此,我们将低压静电纺丝与增材制造相结合,作为一种对悬浮中尺度纤维层进行图案化的方法。纤维层原位悬浮于多个纤维层中且具有可设计方向的3D打印支撑结构之间。我们研究了实现纤维悬浮阈值的关键工作参数,利用这些行为观察结果建立了一个“纤维悬浮指标”,并通过设计复杂的悬浮纤维结构来展示其效用。通过这种方法生产的单根纤维接近微米/亚微米尺度,而整体悬浮的三维纤维结构高度可跨越一厘米以上。我们展示了悬浮纤维结构在3D细胞培养中的应用,利用图案化的纤维形貌来引导悬浮的高细胞密度结构的组装。我们报道的基于溶液的纤维悬浮图案化工艺在对包括细胞外基质样材料在内的软聚合物进行高分辨率和高纵横比图案化方面具有独特能力。因此,该平台通过纳入功能性纤维元件可为设备和功能性产品提供新的设计和制造能力。