State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China.
Department of Chemistry, The University of Texas at El Paso, TX 79968, United States; Environmental Science and Engineering PhD program, The University of Texas at El Paso, El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, TX 79968, United States.
Sci Total Environ. 2017 Feb 1;578:408-416. doi: 10.1016/j.scitotenv.2016.10.197. Epub 2016 Nov 9.
Evidence suggests that CO modifies the behavior of nanomaterials. Thus, in a few decades, plants might be exposed to additional stress if atmospheric levels of CO and the environmental burden of nanomaterials increase at the current pace. Here, we used a full-size free-air CO enrichment (FACE) system in farm fields to investigate the effect of elevated CO levels on phytotoxicity and microbial toxicity of nTiO (0, 50, and 200mgkg) in a paddy soil system. Results show that nTiO did not induce visible signs of toxicity in rice plants cultivated at the ambient CO level (370μmolmol), but under the high CO concentration (570μmolmol) nTiO significantly reduced rice biomass by 17.9% and 22.1% at 50mgkg and 200mgkg, respectively, and grain yield by 20.8% and 44.1% at 50mgkg and 200mgkg, respectively. In addition, at the high CO concentration, nTiO at 200mgkg increased accumulation of Ca, Mg, Mn, P, Zn, and Ti by 22.5%, 16.8%, 29.1%, 7.4%, 15.7% and 8.6%, respectively, but reduced fat and total sugar by 11.2% and 25.5%, respectively, in grains. Such conditions also changed the functional composition of soil microbial communities, alerting specific phyla of bacteria and the diversity and richness of protista. Overall, this study suggests that increases in CO levels would modify the effects of nTiO on the nutritional quality of crops and function of soil microbial communities, with unknown implications for future economics and human health.
有证据表明,CO 会改变纳米材料的行为。因此,如果大气中 CO 水平和纳米材料的环境负担按照目前的速度继续增加,在未来几十年中,植物可能会面临额外的压力。在这里,我们使用大田大气 CO 浓度升高(FACE)系统来研究升高的 CO 水平对水稻田中 nTiO(0、50 和 200mgkg)的植物毒性和微生物毒性的影响。结果表明,在环境 CO 水平(370μmolmol)下,nTiO 没有在水稻植株上引起明显的毒性迹象,但在高 CO 浓度(570μmolmol)下,nTiO 分别使水稻生物量减少了 17.9%和 22.1%,在 50mgkg 和 200mgkg 时,稻谷产量分别减少了 20.8%和 44.1%。此外,在高 CO 浓度下,nTiO 在 200mgkg 时使 Ca、Mg、Mn、P、Zn 和 Ti 的积累分别增加了 22.5%、16.8%、29.1%、7.4%、15.7%和 8.6%,但使稻谷中的脂肪和总糖分别减少了 11.2%和 25.5%。这种情况还改变了土壤微生物群落的功能组成,使特定的细菌门和原生动物的多样性和丰富度受到警示。总的来说,本研究表明,CO 水平的升高会改变 nTiO 对作物营养品质和土壤微生物群落功能的影响,这对未来的经济和人类健康有着未知的影响。