van der Hooft Justin Johan Jozias, Wandy Joe, Barrett Michael P, Burgess Karl E V, Rogers Simon
Glasgow Polyomics, University of Glasgow, Glasgow G61 1QH, United Kingdom.
Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom.
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13738-13743. doi: 10.1073/pnas.1608041113. Epub 2016 Nov 16.
The potential of untargeted metabolomics to answer important questions across the life sciences is hindered because of a paucity of computational tools that enable extraction of key biochemically relevant information. Available tools focus on using mass spectrometry fragmentation spectra to identify molecules whose behavior suggests they are relevant to the system under study. Unfortunately, fragmentation spectra cannot identify molecules in isolation but require authentic standards or databases of known fragmented molecules. Fragmentation spectra are, however, replete with information pertaining to the biochemical processes present, much of which is currently neglected. Here, we present an analytical workflow that exploits all fragmentation data from a given experiment to extract biochemically relevant features in an unsupervised manner. We demonstrate that an algorithm originally used for text mining, latent Dirichlet allocation, can be adapted to handle metabolomics datasets. Our approach extracts biochemically relevant molecular substructures ("Mass2Motifs") from spectra as sets of co-occurring molecular fragments and neutral losses. The analysis allows us to isolate molecular substructures, whose presence allows molecules to be grouped based on shared substructures regardless of classical spectral similarity. These substructures, in turn, support putative de novo structural annotation of molecules. Combining this spectral connectivity to orthogonal correlations (e.g., common abundance changes under system perturbation) significantly enhances our ability to provide mechanistic explanations for biological behavior.
由于缺乏能够提取关键生物化学相关信息的计算工具,非靶向代谢组学回答生命科学中重要问题的潜力受到了阻碍。现有工具侧重于使用质谱碎片谱来识别那些行为表明它们与所研究系统相关的分子。不幸的是,碎片谱无法孤立地识别分子,而是需要真实标准品或已知碎片分子的数据库。然而,碎片谱中充满了与当前存在的生化过程相关的信息,其中大部分目前被忽视了。在这里,我们提出了一种分析流程,该流程利用给定实验的所有碎片数据以无监督的方式提取生物化学相关特征。我们证明,一种最初用于文本挖掘的算法——潜在狄利克雷分配算法,可以进行调整以处理代谢组学数据集。我们的方法从光谱中提取生物化学相关的分子子结构(“质量到基序”)作为共现分子片段和中性损失的集合。该分析使我们能够分离出分子子结构,其存在使得分子能够基于共享子结构进行分组,而不管经典的光谱相似性如何。这些子结构反过来支持分子的推定从头结构注释。将这种光谱连通性与正交相关性(例如,系统扰动下的共同丰度变化)相结合,显著增强了我们为生物学行为提供机理解释的能力。