State Key Lab of Microbial Technology, Shandong University, Jinan, China.
PLoS One. 2012;7(9):e39470. doi: 10.1371/journal.pone.0039470. Epub 2012 Sep 12.
Acidithiobacillus caldus (A. caldus) is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs) for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox) system (omitting SoxCD), non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR). The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system.
An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor) was created and its growth abilities were measured in media using elemental sulfur (S(0)) and tetrathionate (K(2)S(4)O(6)) as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR) of the wild type and the Δsor mutant in S(0) and K(2)S(4)O(6) media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO) and heterodisulfide reductase (HDR), the truncated Sox pathway, and the S(4)I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media.
An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized.
嗜酸硫杆菌(A. caldus)广泛应用于生物浸出。它从元素硫和还原无机硫化合物(RISCs)的氧化中获取能量和电子,用于二氧化碳固定和生长。基因组分析表明,其硫氧化系统涉及截断的硫氧化(Sox)系统(省略 SoxCD)、类似于 A. ferrooxidans 中硫氧化的非 Sox 硫氧化系统以及硫氧还蛋白还原酶(SOR)。A. caldus 硫氧化系统的复杂性给其硫氧化机制的研究带来了很大的障碍。然而,近年来 A. caldus 遗传操作方法的发展为构建遗传突变体研究硫氧化系统提供了有力工具。
构建了缺失硫氧还蛋白还原酶基因(sor)的嗜酸硫杆菌突变体,并分别以元素硫(S(0))和连四硫酸盐(K(2)S(4)O(6))为底物,测量其在培养基中的生长能力。然后,对野生型和Δsor 突变体在 S(0)和 K(2)S(4)O(6)培养基中的转录组进行比较分析(微阵列和实时定量 PCR),以检测参与硫氧化的差异表达基因。SOR 被认为氧化细胞质中的元素硫,但不能将硫氧化与电子传递链或底物水平磷酸化偶联。根据硫氧化基因的表达模式和野生型和突变体在不同底物培养基中的生长能力,提出了其他元素硫氧化途径,包括硫双加氧酶(SDO)和异型二硫化物还原酶(HDR)、截断的 Sox 途径以及水解连四硫酸盐和氧化硫代硫酸盐的 S(4)I 途径,用于 A. caldus。
提出了一个包含嗜酸硫杆菌各种硫氧化途径的综合硫氧化模型,并总结了该模型的特点。