Suppr超能文献

使用群体数据治疗个体:在精准医学和以患者为中心的证据时代理解异质性治疗效果。

Using group data to treat individuals: understanding heterogeneous treatment effects in the age of precision medicine and patient-centred evidence.

作者信息

Dahabreh Issa J, Hayward Rodney, Kent David M

机构信息

Center for Evidence-based Medicine.

Departments of Health Services, Policy & Practice and Epidemiology, Brown University, Providence, RI, USA.

出版信息

Int J Epidemiol. 2016 Dec 1;45(6):2184-2193. doi: 10.1093/ije/dyw125.

Abstract

Although often conflated, determining the best treatment for an individual (the task of a doctor) is fundamentally different from determining the average effect of treatment in a population (the purpose of a trial). In this paper, we review concepts of heterogeneity of treatment effects (HTE) essential in providing the evidence base for precision medicine and patient-centred care, and explore some inherent limitations of using group data (e.g. from a randomized trial) to guide treatment decisions for individuals. We distinguish between person-level HTE (i.e. that individuals experience different effects from a treatment) and group-level HTE (i.e. that subgroups have different average treatment effects), and discuss the reference class problem, engendered by the large number of potentially informative subgroupings of a study population (each of which may lead to applying a different estimated effect to the same patient), and the scale dependence of group-level HTE. We also review the limitations of conventional 'one-variable-at-a-time' subgroup analyses and discuss the potential benefits of using more comprehensive subgrouping schemes that incorporate information on multiple variables, such as those based on predicted outcome risk. Understanding the conceptual underpinnings of HTE is critical for understanding how studies can be designed, analysed, and interpreted to better inform individualized clinical decisions.

摘要

尽管常被混为一谈,但确定针对个体的最佳治疗方法(医生的任务)与确定治疗在人群中的平均效果(试验的目的)有着根本区别。在本文中,我们回顾了治疗效果异质性(HTE)的概念,这些概念对于提供精准医学和以患者为中心的医疗的证据基础至关重要,并探讨了使用群体数据(例如来自随机试验的数据)来指导个体治疗决策的一些固有局限性。我们区分了个体水平的HTE(即个体对治疗有不同的反应)和群体水平的HTE(即亚组有不同的平均治疗效果),并讨论了参考类别问题,该问题由研究人群大量潜在的信息丰富的亚组划分(每个亚组划分可能导致对同一患者应用不同的估计效果)以及群体水平HTE的尺度依赖性所引发。我们还回顾了传统的“一次一个变量”亚组分析的局限性,并讨论了使用更全面的亚组划分方案的潜在益处,这些方案纳入了多个变量的信息,例如基于预测结局风险的变量。理解HTE的概念基础对于理解如何设计、分析和解释研究以更好地为个体化临床决策提供信息至关重要。

相似文献

8
Lifting the veil off treatment effect heterogeneity.揭开治疗效果异质性的面纱。
Am Heart J. 2024 Aug;274:23-31. doi: 10.1016/j.ahj.2024.04.020. Epub 2024 May 2.
10
Person-centred medicine and mental health.以患者为中心的医学与精神卫生。
Epidemiol Psychiatr Sci. 2012 Jun;21(2):131-7. doi: 10.1017/S204579601200008X.

引用本文的文献

4
Characterizing Treatment Effect Heterogeneity Using Real-World Data.使用真实世界数据表征治疗效果异质性
Clin Pharmacol Ther. 2025 May;117(5):1209-1216. doi: 10.1002/cpt.3627. Epub 2025 Mar 6.

本文引用的文献

4
A new initiative on precision medicine.一项关于精准医学的新倡议。
N Engl J Med. 2015 Feb 26;372(9):793-5. doi: 10.1056/NEJMp1500523. Epub 2015 Jan 30.
5
Confounding and effect modification: distribution and measure.混杂与效应修正:分布与测量
Epidemiol Methods. 2012 Aug 1;1(1):55-82. doi: 10.1515/2161-962X.1004.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验