Suppr超能文献

语言学习、语言使用与语言变异的演变

Language learning, language use and the evolution of linguistic variation.

作者信息

Smith Kenny, Perfors Amy, Fehér Olga, Samara Anna, Swoboda Kate, Wonnacott Elizabeth

机构信息

University of Edinburgh, Edinburgh, UK

University of Adelaide, Adelaide, Australia.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2017 Jan 5;372(1711). doi: 10.1098/rstb.2016.0051.

Abstract

Linguistic universals arise from the interaction between the processes of language learning and language use. A test case for the relationship between these factors is linguistic variation, which tends to be conditioned on linguistic or sociolinguistic criteria. How can we explain the scarcity of unpredictable variation in natural language, and to what extent is this property of language a straightforward reflection of biases in statistical learning? We review three strands of experimental work exploring these questions, and introduce a Bayesian model of the learning and transmission of linguistic variation along with a closely matched artificial language learning experiment with adult participants. Our results show that while the biases of language learners can potentially play a role in shaping linguistic systems, the relationship between biases of learners and the structure of languages is not straightforward. Weak biases can have strong effects on language structure as they accumulate over repeated transmission. But the opposite can also be true: strong biases can have weak or no effects. Furthermore, the use of language during interaction can reshape linguistic systems. Combining data and insights from studies of learning, transmission and use is therefore essential if we are to understand how biases in statistical learning interact with language transmission and language use to shape the structural properties of language.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'.

摘要

语言共性源于语言学习和语言使用过程之间的相互作用。这些因素之间关系的一个测试案例是语言变异,它往往受语言或社会语言学标准的制约。我们如何解释自然语言中不可预测变异的稀缺性,以及语言的这一特性在多大程度上直接反映了统计学习中的偏差?我们回顾了探索这些问题的三个实验工作方向,并介绍了一个关于语言变异学习与传播的贝叶斯模型,以及一个与成人参与者进行的紧密匹配的人工语言学习实验。我们的结果表明,虽然语言学习者的偏差可能在塑造语言系统中发挥作用,但学习者偏差与语言结构之间的关系并非直接明了。微弱的偏差在反复传播过程中积累起来时,可能会对语言结构产生强烈影响。但反之亦然:强烈的偏差可能影响微弱或没有影响。此外,互动过程中的语言使用可以重塑语言系统。因此,如果我们想要理解统计学习中的偏差如何与语言传播和语言使用相互作用以塑造语言的结构特性,那么将来自学习、传播和使用研究的数据与见解结合起来至关重要。本文是主题为“认知科学中统计学习的新前沿”特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2151/5124077/7ef85427eb7c/rstb20160051-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验