文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics.

作者信息

Vallabani N V Srikanth, Singh Sanjay

机构信息

Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University Central Campus, Navrangpura, Ahmedabad, Gujarat 380009 India.

出版信息

3 Biotech. 2018 Jun;8(6):279. doi: 10.1007/s13205-018-1286-z. Epub 2018 Jun 1.


DOI:10.1007/s13205-018-1286-z
PMID:29881657
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5984604/
Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) are considered as chemically inert materials and, therefore, being extensively applied in the areas of imaging, targeting, drug delivery and biosensors. Their unique properties such as low toxicity, biocompatibility, potent magnetic and catalytic behavior and superior role in multifunctional modalities have epitomized them as an appropriate candidate for biomedical applications. Recent developments in the area of materials science have enabled the facile synthesis of Iron oxide nanoparticles (IONPs) offering easy tuning of surface properties and surface functionalization with desired biomolecules. Such developments have enabled IONPs to be easily accommodated in nanocomposite platform or devices. Additionally, the tag of biocompatible material has realized their potential in myriad applications of nanomedicines including imaging modalities, sensing, and therapeutics. Further, IONPs enzyme mimetic activity pronounced their role as nanozymes in detecting biomolecules like glucose, and cholesterol etc. Hence, based on their versatile applications in biomedicine, the present review article focusses on the current trends, developments and future prospects of IONPs in MRI, hyperthermia, photothermal therapy, biomolecules detection, chemotherapy, antimicrobial activity and also their role as the multifunctional agent in diagnosis and nanomedicines.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/75961139fe0f/13205_2018_1286_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/9a5938e532bb/13205_2018_1286_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/d3fc30a6db29/13205_2018_1286_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/3b34fd976611/13205_2018_1286_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/ebe56d1ad77f/13205_2018_1286_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/81dc5f33262e/13205_2018_1286_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/2f977bf906d3/13205_2018_1286_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/0dbfff50086c/13205_2018_1286_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/49f62d74f0f7/13205_2018_1286_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/ae5e9b675418/13205_2018_1286_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/a492d8a55705/13205_2018_1286_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/b28d8550d555/13205_2018_1286_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/75961139fe0f/13205_2018_1286_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/9a5938e532bb/13205_2018_1286_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/d3fc30a6db29/13205_2018_1286_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/3b34fd976611/13205_2018_1286_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/ebe56d1ad77f/13205_2018_1286_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/81dc5f33262e/13205_2018_1286_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/2f977bf906d3/13205_2018_1286_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/0dbfff50086c/13205_2018_1286_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/49f62d74f0f7/13205_2018_1286_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/ae5e9b675418/13205_2018_1286_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/a492d8a55705/13205_2018_1286_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/b28d8550d555/13205_2018_1286_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5984604/75961139fe0f/13205_2018_1286_Fig12_HTML.jpg

相似文献

[1]
Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics.

3 Biotech. 2018-6

[2]
Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review.

Materials (Basel). 2022-1-10

[3]
Magnetic Nanoparticles: Current Trends and Future Aspects in Diagnostics and Nanomedicine.

Curr Drug Metab. 2019

[4]
Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold.

Biomater Sci. 2017-10-24

[5]
Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles.

Nanoscale. 2013-10-4

[6]
Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future.

Materials (Basel). 2020-10-18

[7]
Multimodal Composite Iron Oxide Nanoparticles for Biomedical Applications.

Tissue Eng Regen Med. 2019-10-1

[8]
Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications.

Sci Technol Adv Mater. 2015-4-28

[9]
Iron Oxide Nanoparticles: Physicochemical Characteristics and Historical Developments to Commercialization for Potential Technological Applications.

ACS Biomater Sci Eng. 2021-12-13

[10]
Advancements in Iron Oxide Nanoparticles for Multimodal Imaging and Tumor Theranostics.

Curr Med Chem. 2025

引用本文的文献

[1]
Organic functionality in responsive paramagnetic nanostructures.

Front Chem. 2025-8-14

[2]
Liganded magnetic nanoparticles for magnetic resonance imaging of α-synuclein.

NPJ Parkinsons Dis. 2025-4-23

[3]
4D Biofabrication of Magnetically Augmented Callus Assembloid Implants Enables Rapid Endochondral Ossification via Activation of Mechanosensitive Pathways.

Adv Sci (Weinh). 2025-4

[4]
Enzymatic properties of iron oxide nanoclusters and their application as a colorimetric glucose detection probe.

RSC Adv. 2025-2-10

[5]
Optimized Synthesis and Stabilization of Superparamagnetic Iron Oxide Nanoparticles for Enhanced Biomolecule Adsorption.

ACS Omega. 2025-1-7

[6]
Combating antibiotic resistance in a one health context: a plethora of frontiers.

One Health Outlook. 2024-11-2

[7]
Exploration of Metal-Doped Iron Oxide Nanoparticles as an Antimicrobial Agent: A Comprehensive Review.

Cureus. 2024-9-16

[8]
Recent Advancements in Gallic Acid-Based Drug Delivery: Applications, Clinical Trials, and Future Directions.

Pharmaceutics. 2024-9-13

[9]
Facile Green Synthesis of Iron Oxide Nanoparticles and Their Impact on Cytotoxicity, Antioxidative Properties and Bactericidal Activity.

Iran Biomed J. 2024-3-1

[10]
Implications of siRNA Therapy in Bone Health: Silencing Communicates.

Biomedicines. 2024-1-1

本文引用的文献

[1]
Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy.

J Mater Chem B. 2014-2-21

[2]
Functionalized Hydrophilic Superparamagnetic Iron Oxide Nanoparticles for Magnetic Fluid Hyperthermia Application in Liver Cancer Treatment.

ACS Omega. 2018-4-30

[3]
Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine.

Biosens Bioelectron. 2018-3-13

[4]
The theranostic efficiency of tumor-specific, pH-responsive, peptide-modified, liposome-containing paclitaxel and superparamagnetic iron oxide nanoparticles.

Int J Nanomedicine. 2018-3-13

[5]
Fundamentals and commercial aspects of nanobiosensors in point-of-care clinical diagnostics.

3 Biotech. 2018-3

[6]
Magnetic iron oxide nanoparticles as drug carriers: clinical relevance.

Nanomedicine (Lond). 2018-1-29

[7]
Unveiling the role of ATP in amplification of intrinsic peroxidase-like activity of gold nanoparticles.

3 Biotech. 2018-1

[8]
Convection-enhanced delivery of cetuximab conjugated iron-oxide nanoparticles for treatment of spontaneous canine intracranial gliomas.

J Neurooncol. 2018-1-19

[9]
Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials.

Chem Soc Rev. 2017-12-21

[10]
Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon.

J Colloid Interface Sci. 2017-12-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索