文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于磁治疗学的磁性氧化铁纳米粒子的形态、尺寸和结构控制合成及生物相容性。

Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics.

机构信息

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China.

Advanced Materials of Ministry of Education of China, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China.

出版信息

Theranostics. 2018 May 11;8(12):3284-3307. doi: 10.7150/thno.25220. eCollection 2018.


DOI:10.7150/thno.25220
PMID:29930730
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6010979/
Abstract

In the past decade, iron oxide nanoparticles (IONPs) have attracted more and more attention for their excellent physicochemical properties and promising biomedical applications. In this review, we summarize and highlight recent progress in the design, synthesis, biocompatibility evaluation and magnetic theranostic applications of IONPs, with a special focus on cancer treatment. Firstly, we provide an overview of the controlling synthesis strategies for fabricating zero-, one- and three-dimensional IONPs with different shapes, sizes and structures. Then, the and biocompatibility evaluation and biotranslocation of IONPs are discussed in relation to their chemo-physical properties including particle size, surface properties, shape and structure. Finally, we also highlight significant achievements in magnetic theranostic applications including magnetic resonance imaging (MRI), magnetic hyperthermia and targeted drug delivery. This review provides a background on the controlled synthesis, biocompatibility evaluation and applications of IONPs as cancer theranostic agents and an overview of the most up-to-date developments in this area.

摘要

在过去的十年中,氧化铁纳米粒子(IONPs)因其优异的物理化学性质和有前途的生物医学应用而引起了越来越多的关注。在这篇综述中,我们总结和强调了 IONPs 的设计、合成、生物相容性评估和磁治疗应用的最新进展,特别关注癌症治疗。首先,我们提供了一种概述,介绍了用于制造具有不同形状、大小和结构的零维、一维和三维 IONPs 的控制合成策略。然后,讨论了 IONPs 的生物相容性评估和生物转位与其化学物理性质的关系,包括粒径、表面性质、形状和结构。最后,我们还强调了在磁治疗应用方面的重要成就,包括磁共振成像(MRI)、磁热疗和靶向药物输送。这篇综述提供了作为癌症治疗剂的 IONPs 的受控合成、生物相容性评估和应用的背景,并概述了该领域的最新发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/0b66fc06f47e/thnov08p3284g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/03a11111dbbc/thnov08p3284g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/4763945e749c/thnov08p3284g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/c160212912d8/thnov08p3284g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/26ed60556a09/thnov08p3284g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/a337f4300b43/thnov08p3284g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/3fbd7499ad2a/thnov08p3284g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/3d7557594563/thnov08p3284g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/55ab9fe6e72b/thnov08p3284g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/6d03d058651e/thnov08p3284g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/44810ac49de7/thnov08p3284g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/06b7f6f434d4/thnov08p3284g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/09a685baf669/thnov08p3284g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/35d99782c49c/thnov08p3284g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/2cb9ef7cbbbc/thnov08p3284g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/0b66fc06f47e/thnov08p3284g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/03a11111dbbc/thnov08p3284g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/4763945e749c/thnov08p3284g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/c160212912d8/thnov08p3284g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/26ed60556a09/thnov08p3284g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/a337f4300b43/thnov08p3284g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/3fbd7499ad2a/thnov08p3284g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/3d7557594563/thnov08p3284g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/55ab9fe6e72b/thnov08p3284g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/6d03d058651e/thnov08p3284g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/44810ac49de7/thnov08p3284g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/06b7f6f434d4/thnov08p3284g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/09a685baf669/thnov08p3284g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/35d99782c49c/thnov08p3284g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/2cb9ef7cbbbc/thnov08p3284g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d0/6010979/0b66fc06f47e/thnov08p3284g015.jpg

相似文献

[1]
Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics.

Theranostics. 2018-5-11

[2]
Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications.

Nanoscale. 2021-9-2

[3]
Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics.

Int J Pharm. 2015-10-28

[4]
Composite spheres made of bioengineered spider silk and iron oxide nanoparticles for theranostics applications.

PLoS One. 2019-7-15

[5]
Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy.

Nanomedicine (Lond). 2016-11-23

[6]
Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications.

Nanoscale. 2020-7-23

[7]
New Perspectives on Biomedical Applications of Iron Oxide Nanoparticles.

Curr Med Chem. 2018-2-12

[8]
Multimodal Composite Iron Oxide Nanoparticles for Biomedical Applications.

Tissue Eng Regen Med. 2019-10-1

[9]
Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics.

Drug Discov Today. 2017-4-26

[10]
Gold-based Inorganic Nanohybrids for Nanomedicine Applications.

Theranostics. 2020

引用本文的文献

[1]
Organic functionality in responsive paramagnetic nanostructures.

Front Chem. 2025-8-14

[2]
Design and Application of Superhydrophobic Magnetic Nanomaterials for Efficient Oil-Water Separation: A Critical Review.

Molecules. 2025-8-7

[3]
Exploring the Potential of Zein Nanoparticles in Personalised Cancer Therapy, Highlighting Their Various Methodologies, Applications and Challenges.

J Cell Mol Med. 2025-8

[4]
Luminescent porous silicon decorated with iron oxide nanoparticles synthesized by pulsed laser ablation.

RSC Adv. 2025-6-5

[5]
Developments in nanotechnology approaches for the treatment of solid tumors.

Exp Hematol Oncol. 2025-5-19

[6]
Development of manganese ferrite coated with Prussian blue as an efficient contrast agent for applications in magnetic resonance imaging.

Sci Rep. 2025-4-23

[7]
Therapeutic Approaches with Iron Oxide Nanoparticles to Induce Ferroptosis and Overcome Radioresistance in Cancers.

Pharmaceuticals (Basel). 2025-2-26

[8]
Anisotropic Porous Iron-Based Nanoparticles through Two-Step Hydrothermal and Hydrogen-Based Reduction: Enhanced Magnetic Performance for Potential Biomedical Applications.

ACS Appl Mater Interfaces. 2025-3-19

[9]
Detection of PD-L1 expression levels in malignant pleural mesothelioma with a targeted MRI nanoprobe .

Front Chem. 2024-12-2

[10]
A novel hollow iron nanoparticle system loading PEG-FeO with C5a receptor antagonist for breast cancer treatment.

Front Immunol. 2024

本文引用的文献

[1]
Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy.

Chem Soc Rev. 2018-3-5

[2]
Melatonin potentiates "inside-out" nano-thermotherapy in human breast cancer cells: a potential cancer target multimodality treatment based on melatonin-loaded nanocomposite particles.

Int J Nanomedicine. 2017-10-11

[3]
Multifunctional Theranostic Nanoparticles Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for T-Weighted Magnetic Resonance Imaging and Chemotherapy.

ACS Nano. 2017-10-19

[4]
Artificial local magnetic field inhomogeneity enhances T relaxivity.

Nat Commun. 2017-5-18

[5]
Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy.

Integr Biol (Camb). 2017-6-19

[6]
Exerting Enhanced Permeability and Retention Effect Driven Delivery by Ultrafine Iron Oxide Nanoparticles with T-T Switchable Magnetic Resonance Imaging Contrast.

ACS Nano. 2017-5-4

[7]
Exceedingly small iron oxide nanoparticles as positive MRI contrast agents.

Proc Natl Acad Sci U S A. 2017-2-28

[8]
Iron Oxide Nanoparticle Based Contrast Agents for Magnetic Resonance Imaging.

Mol Pharm. 2017-5-1

[9]
Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.

Nanotechnol Sci Appl. 2016-8-19

[10]
Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells.

Int J Nanomedicine. 2016-7-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索