Suppr超能文献

口腔诊断中的人工智能:利用卷积神经网络检测舌苔

Artificial Intelligence in Oral Diagnosis: Detecting Coated Tongue with Convolutional Neural Networks.

作者信息

Coşgun Baybars Sümeyye, Talu Merve Hacer, Danacı Çağla, Tuncer Seda Arslan

机构信息

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Firat University, Elazığ 23119, Turkey.

Department of Software Engineering, Faculty of Engineering, Firat University, Elazığ 23119, Turkey.

出版信息

Diagnostics (Basel). 2025 Apr 17;15(8):1024. doi: 10.3390/diagnostics15081024.

Abstract

Coated tongue is a common oral condition with notable clinical relevance, often overlooked due to its asymptomatic nature. Its presence may reflect poor oral hygiene and can serve as an early indicator of underlying systemic diseases. This study aimed to develop a robust diagnostic model utilizing convolutional neural networks and machine learning classifiers to improve the detection of coated tongue lesions. A total of 200 tongue images (100 coated and 100 healthy) were analyzed. Images were acquired using a DSLR camera (Nikon D5500 with Sigma Macro 105 mm lens, Nikon, Tokyo, Japan) under standardized daylight conditions. Following preprocessing, feature vectors were extracted using CNN architectures (VGG16, VGG19, ResNet, MobileNet, and NasNet) and classified using Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Multi-Layer Perceptron (MLP) classifiers. Performance metrics included sensitivity, specificity, accuracy, and F1 score. The SVM + VGG19 hybrid model achieved the best performance among all tested configurations, with a sensitivity of 82.6%, specificity of 88.23%, accuracy of 85%, and an F1 score of 86.36%. The SVM + VGG19 model demonstrated high accuracy and reliability in diagnosing coated tongue lesions, highlighting its potential as an effective clinical decision support tool. Future research with larger datasets may further enhance model robustness and applicability in diverse populations.

摘要

舌苔是一种常见的口腔状况,具有显著的临床相关性,但因其无症状的特性常常被忽视。它的出现可能反映出口腔卫生不良,并且可作为潜在全身性疾病的早期指标。本研究旨在利用卷积神经网络和机器学习分类器开发一种强大的诊断模型,以改善对舌苔病变的检测。总共分析了200张舌部图像(100张有舌苔的和100张健康的)。图像是在标准化日光条件下使用数码单反相机(尼康D5500搭配适马105毫米微距镜头,尼康,日本东京)采集的。经过预处理后,使用CNN架构(VGG16、VGG19、ResNet、MobileNet和NasNet)提取特征向量,并使用支持向量机(SVM)、K近邻(KNN)和多层感知器(MLP)分类器进行分类。性能指标包括灵敏度、特异性、准确率和F1分数。在所有测试配置中,SVM + VGG19混合模型表现最佳,灵敏度为82.6%,特异性为88.23%,准确率为85%,F1分数为86.36%。SVM + VGG19模型在诊断舌苔病变方面显示出高准确性和可靠性,突出了其作为有效临床决策支持工具的潜力。未来使用更大数据集的研究可能会进一步提高模型的稳健性及其在不同人群中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82ea/12025637/df5aac3d4352/diagnostics-15-01024-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验