文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于设计交联透明质酸纳米颗粒(cHANPs)的微流控平台,用于增强 MRI。

A Microfluidic Platform to design crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for enhanced MRI.

机构信息

Istituto Italiano di Tecnologia, IIT - Center for Advanced Biomaterials for Health Care, CABHC@CRIB, Largo Barsanti e Matteucci, 80125, Naples, Italy.

University of Naples Federico II, Department of Chemical Engineering, Materials and Industrial Production, P.le Tecchio 80, 80125, Naples, Italy.

出版信息

Sci Rep. 2016 Nov 30;6:37906. doi: 10.1038/srep37906.


DOI:10.1038/srep37906
PMID:27901092
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5128828/
Abstract

Recent advancements in imaging diagnostics have focused on the use of nanostructures that entrap Magnetic Resonance Imaging (MRI) Contrast Agents (CAs), without the need to chemically modify the clinically approved compounds. Nevertheless, the exploitation of microfluidic platforms for their controlled and continuous production is still missing. Here, a microfluidic platform is used to synthesize crosslinked Hyaluronic Acid NanoParticles (cHANPs) in which a clinically relevant MRI-CAs, gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA), is entrapped. This microfluidic process facilitates a high degree of control over particle synthesis, enabling the production of monodisperse particles as small as 35 nm. Furthermore, the interference of Gd-DTPA during polymer precipitation is overcome by finely tuning process parameters and leveraging the use of hydrophilic-lipophilic balance (HLB) of surfactants and pH conditions. For both production strategies proposed to design Gd-loaded cHANPs, a boosting of the relaxation rate T is observed since a T of 1562 is achieved with a 10 μM of Gd-loaded cHANPs while a similar value is reached with 100 μM of the relevant clinical Gd-DTPA in solution. The advanced microfluidic platform to synthesize intravascularly-injectable and completely biocompatible hydrogel nanoparticles entrapping clinically approved CAs enables the implementation of straightforward and scalable strategies in diagnostics and therapy applications.

摘要

最近的成像诊断技术进展集中在使用纳米结构来捕获磁共振成像(MRI)造影剂(CA),而无需对临床批准的化合物进行化学修饰。然而,微流控平台在其受控和连续生产方面的应用仍有待开发。在这里,使用微流控平台合成交联透明质酸纳米颗粒(cHANPs),其中包埋了一种临床相关的 MRI-CA,即钆二乙烯三胺五乙酸(Gd-DTPA)。这种微流控工艺能够高度控制颗粒的合成,从而能够生产出小至 35nm 的单分散颗粒。此外,通过精细调整工艺参数和利用表面活性剂的亲水亲脂平衡(HLB)以及 pH 条件,可以克服 Gd-DTPA 在聚合物沉淀过程中的干扰。对于提出的两种设计载 Gd 的 cHANPs 的生产策略,都观察到弛豫率 T 的提高,因为载 Gd 的 cHANPs 的 T 值为 1562,而在溶液中,相同浓度的临床相关 Gd-DTPA 的 T 值也达到了 1562。该先进的微流控平台用于合成可血管内注射且完全生物相容的水凝胶纳米颗粒,可用于封装临床批准的 CA,从而为诊断和治疗应用提供了简单且可扩展的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe6/5128828/b1e2ddc6481b/srep37906-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe6/5128828/286503a0bc14/srep37906-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe6/5128828/f14701e9a09f/srep37906-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe6/5128828/b1e2ddc6481b/srep37906-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe6/5128828/286503a0bc14/srep37906-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe6/5128828/f14701e9a09f/srep37906-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfe6/5128828/b1e2ddc6481b/srep37906-f3.jpg

相似文献

[1]
A Microfluidic Platform to design crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for enhanced MRI.

Sci Rep. 2016-11-30

[2]
Commentary on "A Microfluidic Platform to Design Crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for Enhanced MRI".

Mol Imaging. 2017-1-1

[3]
Hydrodenticity to enhance relaxivity of gadolinium-DTPA within crosslinked hyaluronic acid nanoparticles.

Nanomedicine (Lond). 2017-8-17

[4]
PEGylated crosslinked hyaluronic acid nanoparticles designed through a microfluidic platform for nanomedicine.

Nanomedicine (Lond). 2017-8-17

[5]
Hybrid core shell nanoparticles entrapping Gd-DTPA and F-FDG for simultaneous PET/MRI acquisitions.

Nanomedicine (Lond). 2017-8-17

[6]
A Microfluidic Platform to design Multimodal PEG - crosslinked Hyaluronic Acid Nanoparticles (PEG-cHANPs) for diagnostic applications.

Sci Rep. 2020-4-7

[7]
Targeting Nanostrategies for Imaging of Atherosclerosis.

Contrast Media Mol Imaging. 2021

[8]
Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent.

J Drug Target. 2010-11-23

[9]
Theranostic Design of Angiopep-2 Conjugated Hyaluronic Acid Nanoparticles (Thera-ANG-cHANPs) for Dual Targeting and Boosted Imaging of Glioma Cells.

Cancers (Basel). 2021-1-28

[10]
Fabrication and Characterization of Gd-DTPA-Loaded Chitosan-Poly(Acrylic Acid) Nanoparticles for Magnetic Resonance Imaging.

Macromol Biosci. 2015-4-7

引用本文的文献

[1]
Recent advances in bioactive hydrogel microspheres: Material engineering strategies and biomedical prospects.

Mater Today Bio. 2025-2-25

[2]
Recent nanotheranostic approaches in cancer research.

Clin Exp Med. 2024-1-19

[3]
Emerging Advances in Microfluidic Hydrogel Droplets for Tissue Engineering and STEM Cell Mechanobiology.

Gels. 2023-10-1

[4]
Insulin Activation Mediated by Uptake Mechanisms: A Comparison of the Behavior between Polymer Nanoparticles and Extracellular Vesicles in 3D Liver Tissues.

Biomacromolecules. 2023-5-8

[5]
On-Chip Control over Polyelectrolyte-Surfactant Complexation in Nonequilibrium Microfluidic Confinement.

Polymers (Basel). 2022-9-30

[6]
Update on the Use of PET/MRI Contrast Agents and Tracers in Brain Oncology: A Systematic Review.

Int J Nanomedicine. 2022

[7]
Systematic overview of soft materials as a novel frontier for MRI contrast agents.

RSC Adv. 2020-7-21

[8]
Hyaluronic Acid: Known for Almost a Century, but Still in Vogue.

Pharmaceutics. 2022-4-11

[9]
coupled Hydrodynamic Flow Focusing (cHFF) to Engineer Lipid-Polymer Nanoparticles (LiPoNs) for Multimodal Imaging and Theranostic Applications.

Biomedicines. 2022-2-14

[10]
Synthesis of self-assembled hyaluronan based nanoparticles and their applications in targeted imaging and therapy.

Carbohydr Res. 2022-1

本文引用的文献

[1]
Impact of biopolymer matrices on relaxometric properties of contrast agents.

Interface Focus. 2016-12-6

[2]
Liposome production by microfluidics: potential and limiting factors.

Sci Rep. 2016-5-19

[3]
High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.

Small. 2015-9-23

[4]
Biopolymer-Based Delivery Systems: Challenges and Opportunities.

Curr Top Med Chem. 2016

[5]
Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging.

Radiology. 2015-3-5

[6]
Potential dual imaging nanoparticle: Gd2O3 nanoparticle.

Sci Rep. 2015-2-24

[7]
Microencapsulation of indocyanine green for potential applications in image-guided drug delivery.

Lab Chip. 2015-2-7

[8]
Shape-controlled synthesis of hybrid nanomaterials via three-dimensional hydrodynamic focusing.

ACS Nano. 2014-10-28

[9]
Continuous flow generation of magnetoliposomes in a low-cost portable microfluidic platform.

Lab Chip. 2014-9-26

[10]
Three-dimensional flash flow microreactor for scale-up production of monodisperse PEG-PLGA nanoparticles.

Lab Chip. 2014-10-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索