用于骨再生的骨诱导重组丝融合蛋白

Osteoinductive recombinant silk fusion proteins for bone regeneration.

作者信息

Dinjaski Nina, Plowright Robyn, Zhou Shun, Belton David J, Perry Carole C, Kaplan David L

机构信息

Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, United States.

Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.

出版信息

Acta Biomater. 2017 Feb;49:127-139. doi: 10.1016/j.actbio.2016.12.002. Epub 2016 Dec 8.

Abstract

UNLABELLED

Protein polymers provide a unique opportunity for tunable designs of material systems due to the genetic basis of sequence control. To address the challenge of biomineralization interfaces with protein based materials, we genetically engineered spider silks to design organic-inorganic hybrid systems. The spider silk inspired domain (SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT) served as an organic scaffold to control material stability and to allow multiple modes of processing, whereas the hydroxyapatite binding domain VTKHLNQISQSY (VTK), provided control over osteogenesis. The VTK domain was fused either to the N-, C- or both terminals of the spider silk domain to understand the effect of position on material properties and mineralization. The addition of the VTK domain to silk did not affect the physical properties of the silk recombinant constructs, but it had a critical role in the induction of biomineralization. When the VTK domain was placed on both the C- and N-termini the formation of crystalline hydroxyapatite was significantly increased. In addition, all of the recombinant proteins in film format supported the growth and proliferation of human mesenchymal stem cells (hMSCs). Importantly, the presence of the VTK domain enhanced osteoinductive properties up to 3-fold compared to the control (silk alone without VTK). Therefore, silk-VTK fusion proteins have been shown suitable for mineralization and functionalization for specific biomedical applications.

STATEMENT OF SIGNIFICANCE

Organic-inorganic interfaces are integral to biomaterial functions in many areas of repair and regeneration. Several protein polymers have been investigated for this purpose. Despite their success the limited options to fine-tune their material properties, degradation patterns and functionalize them for each specific biomedical application limits their application. Various studies have shown that the biological performance of such proteins can be improved by genetic engineering. The present study provides data relating protein design parameters and functional outcome quantified by biomineralization and human mesenchymal stem cell differentiation. As such, it helps the design of osteoinductive recombinant biomaterials for bone regeneration.

摘要

未标记

由于序列控制的遗传基础,蛋白质聚合物为材料系统的可调设计提供了独特的机会。为应对基于蛋白质的材料与生物矿化界面相关的挑战,我们对蜘蛛丝进行基因工程改造以设计有机 - 无机杂化系统。蜘蛛丝启发域(SGRGGLGGQG AGAAAAAGGA GQGGYGGLGSQGT)作为有机支架,用于控制材料稳定性并允许多种加工模式,而羟基磷灰石结合域VTKHLNQISQSY(VTK)则用于控制骨生成。将VTK域融合到蜘蛛丝域的N端、C端或两端,以了解位置对材料特性和矿化的影响。在丝中添加VTK域不会影响丝重组构建体的物理特性,但它在生物矿化诱导中起关键作用。当VTK域置于C端和N端时,结晶羟基磷灰石的形成显著增加。此外,所有薄膜形式的重组蛋白均支持人间充质干细胞(hMSCs)的生长和增殖。重要的是,与对照(不含VTK的单独丝)相比,VTK域的存在使骨诱导特性增强了3倍。因此,丝 - VTK融合蛋白已被证明适用于特定生物医学应用的矿化和功能化。

意义声明

有机 - 无机界面对于修复和再生许多领域中的生物材料功能至关重要。为此已经研究了几种蛋白质聚合物。尽管取得了成功,但微调其材料特性、降解模式并针对每种特定生物医学应用对其进行功能化的选择有限,限制了它们的应用。各种研究表明,此类蛋白质的生物学性能可通过基因工程得到改善。本研究提供了将蛋白质设计参数与通过生物矿化和人间充质干细胞分化量化的功能结果相关联的数据。因此,它有助于设计用于骨再生的骨诱导重组生物材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索