School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, China.
Adv Mater. 2017 May;29(20). doi: 10.1002/adma.201601652. Epub 2016 Dec 14.
The third generation of photovoltaic technology aims to reduce the fabrication cost and improve the power conversion efficiency (PCE) of solar cells. Singlet fission (SF), an efficient multiple exciton generation (MEG) process in organic semiconductors, is one promising way to surpass the Shockley-Queisser limit of conventional single-junction solar cells. Traditionally, this MEG process has been observed as an intermolecular process in organic materials. The implementation of intermolecular SF in photovoltaic devices has achieved an external quantum efficiency of over 100% and demonstrated significant promise for boosting the PCE of third generation solar cells. More recently, efficient intramolecular SF has been reported. Intramolecular SF materials are modular and have the potential to overcome certain design constraints that intermolecular SF materials possess, which may allow for more facile integration into devices.
第三代光伏技术旨在降低制造成本并提高太阳能电池的功率转换效率 (PCE)。单线态裂变 (SF) 是有机半导体中一种有效的多激子产生 (MEG) 过程,是超越传统单结太阳能电池肖克利-奎塞尔极限的一种很有前途的方法。传统上,这种 MEG 过程被观察为有机材料中的分子间过程。在光伏器件中实施分子间 SF 已实现超过 100%的外量子效率,并为提高第三代太阳能电池的 PCE 展示了巨大的潜力。最近,报道了有效的分子内 SF。分子内 SF 材料具有模块性,有可能克服分子间 SF 材料所具有的某些设计限制,这可能使它们更容易集成到器件中。