Yu Pei, Wang Chuanyong, Zhou Jinglin, Jiang Li, Xue Jing, Li Wei
State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Biomed Res Int. 2016;2016:8901253. doi: 10.1155/2016/8901253. Epub 2016 Nov 15.
Zirconia is becoming a prevalent material in dentistry. However, any foreign bodies inserted may provide new niches for the bacteria in oral cavity. The object of this study was to explore the effect of surface properties including surface roughness and hydrophobicity on the adhesion and biofilm formation of () to zirconia. Atomic force microscopy was employed to determine the zirconia surface morphology and the adhesion forces between the and zirconia. The results showed that the surface roughness was nanoscale and significantly different among tested groups ( < 0.05): Coarse (23.94 ± 2.52 nm) > Medium (17.00 ± 3.81 nm) > Fine (11.89 ± 1.68 nm). The contact angles of the Coarse group were the highest, followed by the Medium and the Fine groups. Increasing the surface roughness and hydrophobicity resulted in an increase of adhesion forces and early attachment (2 h and 4 h) of on the zirconia but no influence on the further development of biofilm (6 h~24 h). Our findings suggest that the surface roughness in nanoscale and hydrophobicity of zirconia had influence on the initial adhesion force and early attachment instead of whole stages of biofilm formation.
氧化锆正成为牙科领域一种普遍使用的材料。然而,任何植入的异物都可能为口腔中的细菌提供新的生存空间。本研究的目的是探讨包括表面粗糙度和疏水性在内的表面特性对()在氧化锆上的黏附及生物膜形成的影响。采用原子力显微镜来测定氧化锆的表面形态以及()与氧化锆之间的黏附力。结果表明,表面粗糙度处于纳米尺度,且在各测试组之间存在显著差异(<0.05):粗糙组(23.94±2.52nm)>中等组(17.00±3.81nm)>精细组(11.89±1.68nm)。粗糙组的接触角最高,其次是中等组和精细组。表面粗糙度和疏水性的增加导致()在氧化锆上的黏附力和早期附着(2小时和4小时)增加,但对生物膜的进一步发育(6小时至24小时)没有影响。我们的研究结果表明,氧化锆的纳米尺度表面粗糙度和疏水性对()的初始黏附力和早期附着有影响,而不是对生物膜形成的整个阶段有影响。