Suppr超能文献

基于重复诊断的三类混合模型估计房颤患病率。

Estimating the prevalence of atrial fibrillation from a three-class mixture model for repeated diagnoses.

作者信息

Li Liang, Mao Huzhang, Ishwaran Hemant, Rajeswaran Jeevanantham, Ehrlinger John, Blackstone Eugene H

机构信息

Department of Biostatistics, MD Anderson Cancer Center, Houston, Texas.

Department of Biostatistics, The University of Texas Health Science Center at Houston, Houston, Texas.

出版信息

Biom J. 2017 Mar;59(2):331-343. doi: 10.1002/bimj.201600098. Epub 2016 Dec 16.

Abstract

Atrial fibrillation (AF) is an abnormal heart rhythm characterized by rapid and irregular heartbeat, with or without perceivable symptoms. In clinical practice, the electrocardiogram (ECG) is often used for diagnosis of AF. Since the AF often arrives as recurrent episodes of varying frequency and duration and only the episodes that occur at the time of ECG can be detected, the AF is often underdiagnosed when a limited number of repeated ECGs are used. In studies evaluating the efficacy of AF ablation surgery, each patient undergoes multiple ECGs and the AF status at the time of ECG is recorded. The objective of this paper is to estimate the marginal proportions of patients with or without AF in a population, which are important measures of the efficacy of the treatment. The underdiagnosis problem is addressed by a three-class mixture regression model in which a patient's probability of having no AF, paroxysmal AF, and permanent AF is modeled by auxiliary baseline covariates in a nested logistic regression. A binomial regression model is specified conditional on a subject being in the paroxysmal AF group. The model parameters are estimated by the Expectation-Maximization (EM) algorithm. These parameters are themselves nuisance parameters for the purpose of this research, but the estimators of the marginal proportions of interest can be expressed as functions of the data and these nuisance parameters and their variances can be estimated by the sandwich method. We examine the performance of the proposed methodology in simulations and two real data applications.

摘要

心房颤动(AF)是一种异常心律,其特征为心跳快速且不规律,可能伴有或不伴有可感知症状。在临床实践中,心电图(ECG)常被用于诊断AF。由于AF常常以不同频率和持续时间的反复发作形式出现,且只有在进行心电图检查时发生的发作才能被检测到,因此当使用有限次数的重复心电图时,AF常常被漏诊。在评估AF消融手术疗效的研究中,每位患者都要接受多次心电图检查,并记录心电图检查时的AF状态。本文的目的是估计总体中患有或未患有AF的患者的边缘比例,这是治疗效果的重要衡量指标。通过一个三类混合回归模型来解决漏诊问题,在该模型中,患者无AF、阵发性AF和永久性AF的概率通过嵌套逻辑回归中的辅助基线协变量进行建模。在受试者处于阵发性AF组的条件下指定一个二项回归模型。模型参数通过期望最大化(EM)算法进行估计。对于本研究而言,这些参数本身是干扰参数,但感兴趣的边缘比例的估计量可以表示为数据的函数,并且它们的方差可以通过三明治方法进行估计。我们在模拟和两个实际数据应用中检验了所提出方法的性能。

相似文献

5
Predictors of Long-term Success After Concomitant Surgical Ablation for Atrial Fibrillation.房颤同期外科消融术后长期成功的预测因素
Semin Thorac Cardiovasc Surg. 2017;29(3):294-298. doi: 10.1053/j.semtcvs.2017.08.015. Epub 2017 Aug 25.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验