高斯线性隐马尔可夫模型:一个Python软件包。
The Gaussian-linear hidden Markov model: A Python package.
作者信息
Vidaurre Diego, Masaracchia Laura, Larsen Nick Y, Ruijters Lenno R P T, Alonso Sonsoles, Ahrends Christine, Woolrich Mark W
机构信息
Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Oxford Centre for Human Brain Analysis, Psychiatry Department, Oxford University, Oxford, United Kingdom.
出版信息
Imaging Neurosci (Camb). 2025 Feb 3;3. doi: 10.1162/imag_a_00460. eCollection 2025.
We propose the Gaussian-Linear Hidden Markov model (GLHMM), a generalisation of different types of HMMs commonly used in neuroscience. In short, the GLHMM is a general framework where linear regression is used to flexibly parameterise the Gaussian state distribution, thereby accommodating a wide range of uses-including unsupervised, encoding, and decoding models. GLHMM is available as a Python toolbox with an emphasis on statistical testing and out-of-sample prediction-that is, aimed at finding and characterising brain-behaviour associations. The toolbox uses a stochastic variational inference approach, enabling it to handle large data sets at reasonable computational time. The GLHMM can work with various types of data, including animal recordings or non-brain data, and is suitable for a broad range of experimental paradigms. For demonstration, we show examples with fMRI, local field potential, electrocorticography, magnetoencephalography, and pupillometry.
我们提出了高斯-线性隐马尔可夫模型(GLHMM),这是神经科学中常用的不同类型隐马尔可夫模型的一种推广。简而言之,GLHMM是一个通用框架,其中线性回归用于灵活地参数化高斯状态分布,从而适用于广泛的用途,包括无监督模型、编码模型和解码模型。GLHMM作为一个Python工具箱可用,重点在于统计测试和样本外预测,即旨在发现和表征脑-行为关联。该工具箱使用随机变分推理方法,使其能够在合理的计算时间内处理大型数据集。GLHMM可以处理各种类型的数据,包括动物记录或非脑数据,适用于广泛的实验范式。为了进行演示,我们展示了功能磁共振成像(fMRI)、局部场电位、皮层脑电图、脑磁图和瞳孔测量的示例。