Suppr超能文献

由现实世界新闻引发的社交媒体高活跃度事件的预测与特征分析

Prediction and Characterization of High-Activity Events in Social Media Triggered by Real-World News.

作者信息

Kalyanam Janani, Quezada Mauricio, Poblete Barbara, Lanckriet Gert

机构信息

Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, United States of America.

Department of Computer Science, University of Chile, Santiago, Chile.

出版信息

PLoS One. 2016 Dec 16;11(12):e0166694. doi: 10.1371/journal.pone.0166694. eCollection 2016.

Abstract

On-line social networks publish information on a high volume of real-world events almost instantly, becoming a primary source for breaking news. Some of these real-world events can end up having a very strong impact on on-line social networks. The effect of such events can be analyzed from several perspectives, one of them being the intensity and characteristics of the collective activity that it produces in the social platform. We research 5,234 real-world news events encompassing 43 million messages discussed on the Twitter microblogging service for approximately 1 year. We show empirically that exogenous news events naturally create collective patterns of bursty behavior in combination with long periods of inactivity in the network. This type of behavior agrees with other patterns previously observed in other types of natural collective phenomena, as well as in individual human communications. In addition, we propose a methodology to classify news events according to the different levels of intensity in activity that they produce. In particular, we analyze the most highly active events and observe a consistent and strikingly different collective reaction from users when they are exposed to such events. This reaction is independent of an event's reach and scope. We further observe that extremely high-activity events have characteristics that are quite distinguishable at the beginning stages of their outbreak. This allows us to predict with high precision, the top 8% of events that will have the most impact in the social network by just using the first 5% of the information of an event's lifetime evolution. This strongly implies that high-activity events are naturally prioritized collectively by the social network, engaging users early on, way before they are brought to the mainstream audience.

摘要

在线社交网络几乎能即时发布大量关于现实世界事件的信息,成为突发新闻的主要来源。其中一些现实世界事件最终可能会对在线社交网络产生非常强烈的影响。可以从多个角度分析此类事件的影响,其中之一是它在社交平台上产生的集体活动的强度和特征。我们研究了5234个现实世界的新闻事件,这些事件涵盖了在推特微博服务上大约1年时间里讨论的4300万条消息。我们通过实证表明,外部新闻事件自然会在网络长时间不活跃的情况下产生突发行为的集体模式。这种行为类型与先前在其他类型的自然集体现象以及个人人际交流中观察到的其他模式一致。此外,我们提出了一种根据新闻事件产生的不同活动强度水平对其进行分类的方法。特别是,我们分析了最活跃的事件,并观察到用户在接触此类事件时会产生一致且明显不同的集体反应。这种反应与事件的传播范围和规模无关。我们进一步观察到,极高活跃度的事件在爆发的初始阶段具有相当明显的特征。这使我们能够通过仅使用事件生命周期演变的前5%的信息,高精度地预测将在社交网络中产生最大影响的前8%的事件。这强烈表明,高活跃度事件在社交网络中自然会被集体优先处理,早在它们被推向主流受众之前就吸引了用户。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dab/5161319/9ab831758104/pone.0166694.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验