Suppr超能文献

用于器官再生的3D生物打印

3D Bioprinting for Organ Regeneration.

作者信息

Cui Haitao, Nowicki Margaret, Fisher John P, Zhang Lijie Grace

机构信息

Department of Mechanical and Aerospace Engineering, Department of Biomedical Engineering, Department of Medicine, The George Washington University, 3590 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA.

Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD, 20742, USA.

出版信息

Adv Healthc Mater. 2017 Jan;6(1). doi: 10.1002/adhm.201601118. Epub 2016 Dec 20.

Abstract

Regenerative medicine holds the promise of engineering functional tissues or organs to heal or replace abnormal and necrotic tissues/organs, offering hope for filling the gap between organ shortage and transplantation needs. Three-dimensional (3D) bioprinting is evolving into an unparalleled biomanufacturing technology due to its high-integration potential for patient-specific designs, precise and rapid manufacturing capabilities with high resolution, and unprecedented versatility. It enables precise control over multiple compositions, spatial distributions, and architectural accuracy/complexity, therefore achieving effective recapitulation of microstructure, architecture, mechanical properties, and biological functions of target tissues and organs. Here we provide an overview of recent advances in 3D bioprinting technology, as well as design concepts of bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering living organs, focusing more specifically on vasculature, neural networks, the heart and liver. We conclude with current challenges and the technical perspective for further development of 3D organ bioprinting.

摘要

再生医学有望通过构建功能性组织或器官来治愈或替换异常和坏死的组织/器官,为填补器官短缺与移植需求之间的差距带来了希望。三维(3D)生物打印正逐渐发展成为一种无与伦比的生物制造技术,这得益于其在患者特异性设计方面的高度整合潜力、具有高分辨率的精确快速制造能力以及前所未有的多功能性。它能够对多种成分、空间分布以及结构精度/复杂性进行精确控制,从而有效重现目标组织和器官的微观结构、结构、力学性能及生物学功能。在此,我们概述了3D生物打印技术的最新进展,以及适用于生物打印过程的生物墨水的设计概念。我们重点关注该技术在构建活体器官方面的应用,更具体地聚焦于脉管系统、神经网络、心脏和肝脏。最后,我们阐述了当前的挑战以及3D器官生物打印进一步发展的技术前景。

相似文献

1
3D Bioprinting for Organ Regeneration.
Adv Healthc Mater. 2017 Jan;6(1). doi: 10.1002/adhm.201601118. Epub 2016 Dec 20.
2
3D Bioprinting for Tissue and Organ Fabrication.
Ann Biomed Eng. 2017 Jan;45(1):148-163. doi: 10.1007/s10439-016-1612-8. Epub 2016 Apr 28.
3
Recent advances in 3D bioprinting for the regeneration of functional cartilage.
Regen Med. 2018 Jan;13(1):73-87. doi: 10.2217/rme-2017-0106. Epub 2018 Jan 19.
4
Progress in 3D bioprinting technology for tissue/organ regenerative engineering.
Biomaterials. 2020 Jan;226:119536. doi: 10.1016/j.biomaterials.2019.119536. Epub 2019 Oct 11.
5
Advances in Regenerative Medicine and Biomaterials.
Methods Mol Biol. 2023;2575:127-152. doi: 10.1007/978-1-0716-2716-7_7.
6
Advances in 3D skin bioprinting for wound healing and disease modeling.
Regen Biomater. 2022 Dec 19;10:rbac105. doi: 10.1093/rb/rbac105. eCollection 2023.
7
Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs.
ACS Appl Bio Mater. 2024 Jan 15;7(1):17-43. doi: 10.1021/acsabm.3c00806. Epub 2023 Dec 13.
8
3D Bioprinting: from Benches to Translational Applications.
Small. 2019 Jun;15(23):e1805510. doi: 10.1002/smll.201805510. Epub 2019 Apr 29.
9
Organ bioprinting: progress, challenges and outlook.
J Mater Chem B. 2023 Nov 8;11(43):10263-10287. doi: 10.1039/d3tb01630g.
10
3D bioprinting for engineering complex tissues.
Biotechnol Adv. 2016 Jul-Aug;34(4):422-434. doi: 10.1016/j.biotechadv.2015.12.011. Epub 2015 Dec 23.

引用本文的文献

1
New Frontiers in 3D Printing Using Biocompatible Polymers.
Int J Mol Sci. 2025 Aug 19;26(16):8016. doi: 10.3390/ijms26168016.
2
Peripheral Nerve Regeneration Reimagined: Cutting-Edge Biomaterials and Biotechnological Innovations.
Bioengineering (Basel). 2025 Aug 11;12(8):864. doi: 10.3390/bioengineering12080864.
3
3D Bioprinted Renal Constructs Using Kidney-Specific ECM Bioink System on Kidney Regeneration.
Adv Healthc Mater. 2025 Jun 26:e2502576. doi: 10.1002/adhm.202502576.
4
In Situ 3D Printing of Conformal Bioflexible Electronics via Annealing PEDOT:PSS/PVA Composite Bio-Ink.
Polymers (Basel). 2025 May 26;17(11):1479. doi: 10.3390/polym17111479.
5
Three-Dimensional Bioprinting for Intervertebral Disc Regeneration.
J Funct Biomater. 2025 Mar 14;16(3):105. doi: 10.3390/jfb16030105.
7
From morphology to single-cell molecules: high-resolution 3D histology in biomedicine.
Mol Cancer. 2025 Mar 3;24(1):63. doi: 10.1186/s12943-025-02240-x.
9
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration.
Int J Extrem Manuf. 2025 Feb 1;7(1):012009. doi: 10.1088/2631-7990/ad878c. Epub 2024 Nov 19.
10
Scaffold-mediated liver regeneration: A comprehensive exploration of current advances.
J Tissue Eng. 2024 Oct 13;15:20417314241286092. doi: 10.1177/20417314241286092. eCollection 2024 Jan-Dec.

本文引用的文献

1
3D Printing Gets a Boost and Opportunities with Polymer Materials.
ACS Macro Lett. 2014 Apr 15;3(4):382-386. doi: 10.1021/mz4006556. Epub 2014 Apr 3.
2
Evolution of Bioinks and Additive Manufacturing Technologies for 3D Bioprinting.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1662-1678. doi: 10.1021/acsbiomaterials.6b00088. Epub 2016 Apr 7.
3
Inkjet printing as a deposition and patterning tool for polymers and inorganic particles.
Soft Matter. 2008 Mar 20;4(4):703-713. doi: 10.1039/b711984d.
4
Bio-ink for on-demand printing of living cells.
Biomater Sci. 2013 Feb 3;1(2):224-230. doi: 10.1039/c2bm00114d. Epub 2012 Nov 5.
6
Three-dimensional culture of small-diameter vascular grafts.
J Mater Chem B. 2016 May 28;4(20):3443-3453. doi: 10.1039/c6tb00024j. Epub 2016 Mar 3.
7
Physical cues of cell culture materials lead the direction of differentiation lineages of pluripotent stem cells.
J Mater Chem B. 2015 Nov 7;3(41):8032-8058. doi: 10.1039/c5tb01276g. Epub 2015 Aug 26.
8
3D printing technology to control BMP-2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration.
J Mater Chem B. 2015 Jul 21;3(27):5415-5425. doi: 10.1039/c5tb00637f. Epub 2015 Jun 5.
9
3D Printing of Personalized Artificial Bone Scaffolds.
3D Print Addit Manuf. 2015 Jun 1;2(2):56-64. doi: 10.1089/3dp.2015.0001.
10
Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.
Tissue Eng Part C Methods. 2016 Oct;22(10):952-963. doi: 10.1089/ten.tec.2015.0542.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验