Zhang Xuegui, Lu Chengbang, Zhang Yunxiang, Cai Zixi, He Yingning, Liang Xiangyu
School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China.
Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
Polymers (Basel). 2025 May 26;17(11):1479. doi: 10.3390/polym17111479.
High-performance flexible sensors capable of direct integration with biological tissues are essential for personalized health monitoring, assistive rehabilitation, and human-machine interaction. However, conventional devices face significant challenges in achieving conformal integration with biological surfaces, along with sufficient biomechanical compatibility and biocompatibility. This research presents an in situ 3D biomanufacturing strategy utilizing Direct Ink Writing (DIW) technology to fabricate functional bioelectronic interfaces directly onto human skin, based on a novel annealing PEDOT:PSS/PVA composite bio-ink. Central to this strategy is the utilization of a novel annealing PEDOT:PSS/PVA composite material, subjected to specialized processing involving freeze-drying and subsequent thermal annealing, which is then formulated into a DIW ink exhibiting excellent printability. Owing to the enhanced network structure resulting from this unique fabrication process, films derived from this composite material exhibit favorable electrical conductivity (ca. 6 S/m in the dry state and 2 S/m when swollen) and excellent mechanical stretchability (maximum strain reaching 170%). The material also demonstrates good adhesion to biological interfaces and high-fidelity printability. Devices fabricated using this material achieved good conformal integration onto a finger joint and demonstrated strain-sensitive, repeatable responses during joint flexion and extension, capable of effectively transducing local strain into real-time electrical resistance signals. This study validates the feasibility of using the DIW biomanufacturing technique with this novel material for the direct on-body fabrication of functional sensors. It offers new material and manufacturing paradigms for developing highly customized and seamlessly integrated bioelectronic devices.
能够与生物组织直接集成的高性能柔性传感器对于个性化健康监测、辅助康复和人机交互至关重要。然而,传统设备在与生物表面实现共形集成以及具备足够的生物力学兼容性和生物相容性方面面临重大挑战。本研究提出了一种原位3D生物制造策略,利用直接墨水书写(DIW)技术,基于一种新型退火PEDOT:PSS/PVA复合生物墨水,直接在人体皮肤上制造功能性生物电子界面。该策略的核心是利用一种新型退火PEDOT:PSS/PVA复合材料,经过包括冷冻干燥和随后的热退火在内的特殊处理,然后将其配制成具有优异可印刷性的DIW墨水。由于这种独特制造工艺产生的增强网络结构,由这种复合材料制成的薄膜表现出良好的导电性(干燥状态下约为6 S/m,肿胀时为2 S/m)和出色的机械拉伸性(最大应变达到170%)。该材料还表现出对生物界面的良好粘附性和高保真可印刷性。使用这种材料制造的设备在手指关节上实现了良好的共形集成,并在关节屈伸过程中表现出应变敏感、可重复的响应,能够有效地将局部应变转换为实时电阻信号。本研究验证了使用DIW生物制造技术与这种新型材料直接在身体上制造功能性传感器的可行性。它为开发高度定制化和无缝集成的生物电子设备提供了新的材料和制造范例。