Fergadiotis Gerasimos, Gorman Kyle, Bedrick Steven
Portland State University, OR.
Oregon Health and Sciences University, Portland.
Am J Speech Lang Pathol. 2016 Dec 1;25(4S):S776-S787. doi: 10.1044/2016_AJSLP-15-0147.
This study was intended to evaluate a series of algorithms developed to perform automatic classification of paraphasic errors (formal, semantic, mixed, neologistic, and unrelated errors).
We analyzed 7,111 paraphasias from the Moss Aphasia Psycholinguistics Project Database (Mirman et al., 2010) and evaluated the classification accuracy of 3 automated tools. First, we used frequency norms from the SUBTLEXus database (Brysbaert & New, 2009) to differentiate nonword errors and real-word productions. Then we implemented a phonological-similarity algorithm to identify phonologically related real-word errors. Last, we assessed the performance of a semantic-similarity criterion that was based on word2vec (Mikolov, Yih, & Zweig, 2013).
Overall, the algorithmic classification replicated human scoring for the major categories of paraphasias studied with high accuracy. The tool that was based on the SUBTLEXus frequency norms was more than 97% accurate in making lexicality judgments. The phonological-similarity criterion was approximately 91% accurate, and the overall classification accuracy of the semantic classifier ranged from 86% to 90%.
Overall, the results highlight the potential of tools from the field of natural language processing for the development of highly reliable, cost-effective diagnostic tools suitable for collecting high-quality measurement data for research and clinical purposes.
本研究旨在评估一系列为执行错语错误(形式、语义、混合、新语症和无关错误)自动分类而开发的算法。
我们分析了来自莫斯失语症心理语言学项目数据库(米尔曼等人,2010年)的7111条错语,并评估了3种自动化工具的分类准确性。首先,我们使用了SUBTLEXus数据库(布里斯巴特和纽,2009年)中的频率规范来区分非词错误和实词产出。然后我们实施了一种语音相似性算法来识别语音相关的实词错误。最后,我们评估了基于word2vec(米科洛夫、伊和茨威格,2013年)的语义相似性标准的性能。
总体而言,算法分类以高精度复制了所研究的主要错语类别的人工评分。基于SUBTLEXus频率规范的工具在进行词汇判断时准确率超过97%。语音相似性标准的准确率约为91%,语义分类器的总体分类准确率在86%至90%之间。
总体而言,结果突出了自然语言处理领域的工具在开发适用于为研究和临床目的收集高质量测量数据的高度可靠、具有成本效益的诊断工具方面的潜力。