Suppr超能文献

识别肾功能轨迹的亚组。

Identifying subgroups of renal function trajectories.

机构信息

Univ. Bordeaux, ISPED, Centre INSERM U1219-Bordeaux Population Health Research, Bordeaux, France.

CESP, Inserm, Univ Paris-Sud, UVSQ, Univ Paris-Saclay, Villejuif, France.

出版信息

Nephrol Dial Transplant. 2017 Apr 1;32(suppl_2):ii185-ii193. doi: 10.1093/ndt/gfw380.

Abstract

BACKGROUND

Renal function in patients with chronic kidney disease (CKD) may follow different trajectory profiles. The aim of this study was to evaluate and illustrate the ability of the latent class linear mixed model (LCMM) to identify clinically relevant subgroups of renal function trajectories within a multicenter hospital-based cohort of CKD patients.

METHODS

We analysed data from the NephroTest cohort including 1967 patients with all-stage CKD at baseline who had glomerular filtration rate (GFR) both measured by 51 Cr-EDTA renal clearance (mGFR) and estimated by the CKD-EPI equation (eGFR); 1103 patients had at least two measurements. The LCMM was used to identify subgroups of GFR trajectories, and patients' characteristics at baseline were compared between the subgroups identified.

RESULTS

Five classes of mGFR trajectories were identified. Three had a slow linear decline of mGFR over time at different levels. In the two others, patients had a high level of mGFR at baseline with either a strong nonlinear decline over time ( n  = 11) or a nonlinear improvement ( n  = 94) of mGFR. Higher levels of proteinuria and blood pressure at baseline were observed in classes with either severely decreased mGFR or strong mGFR decline over time. Using eGFR provided similar findings.

CONCLUSION

The LCMM allowed us to identify in our cohort five clinically relevant subgroups of renal function trajectories. It could be used in other CKD cohorts to better characterize their different profiles of disease progression, as well as to investigate specific risk factors associated with each profile.

摘要

背景

慢性肾脏病(CKD)患者的肾功能可能呈现出不同的轨迹模式。本研究旨在评估和说明潜在类别线性混合模型(LCMM)在多中心基于医院的 CKD 患者队列中识别肾功能轨迹的临床相关亚组的能力。

方法

我们分析了 NephroTest 队列的数据,该队列包括 1967 名基线时处于所有阶段 CKD 的患者,他们的肾小球滤过率(GFR)既通过 51 Cr-EDTA 肾清除率(mGFR)测量,也通过 CKD-EPI 方程(eGFR)估算;1103 名患者至少有两次测量。LCMM 用于识别 GFR 轨迹的亚组,并比较基线时在亚组中识别的患者特征。

结果

确定了五类 mGFR 轨迹。其中三个在不同水平上呈现出 mGFR 缓慢线性下降的趋势。在另外两个中,患者基线时具有较高水平的 mGFR,要么随着时间的推移呈现强烈的非线性下降(n=11),要么呈现 mGFR 的非线性改善(n=94)。基线时蛋白尿和血压水平较高的患者,其 mGFR 要么严重下降,要么 mGFR 随时间迅速下降。使用 eGFR 也得到了类似的结果。

结论

LCMM 使我们能够在我们的队列中识别出五个具有临床意义的肾功能轨迹亚组。它可以在其他 CKD 队列中使用,以更好地描述它们不同的疾病进展模式,并研究与每种模式相关的特定风险因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验