Jose V Lyju, Appoothy Thulasi, More Ravi P, Arun A Sha
Rumen Microbiology Laboratory, Animal Nutrition Division, National Institute of Animal Nutrition and Physiology, Bangalore, India.
Department of Biotechnology, Jain University, Bangalore, India.
AMB Express. 2017 Dec;7(1):13. doi: 10.1186/s13568-016-0310-0. Epub 2017 Jan 3.
The rumen is a unique natural habitat, exhibiting an unparalleled genetic resource of fibrolytic enzymes of microbial origin that degrade plant polysaccharides. The objectives of this study were to identify the principal plant cell wall-degrading enzymes and the taxonomic profile of rumen microbial communities that are associated with it. The cattle rumen microflora and the carbohydrate-active enzymes were functionally classified through a whole metagenomic sequencing approach. Analysis of the assembled sequences by the Carbohydrate-active enzyme analysis Toolkit identified the candidate genes encoding fibrolytic enzymes belonging to different classes of glycoside hydrolases(11,010 contigs), glycosyltransferases (6366 contigs), carbohydrate esterases (4945 contigs), carbohydrate-binding modules (1975 contigs), polysaccharide lyases (480 contigs), and auxiliary activities (115 contigs). Phylogenetic analysis of CAZyme encoding contigs revealed that a significant proportion of CAZymes were contributed by bacteria belonging to genera Prevotella, Bacteroides, Fibrobacter, Clostridium, and Ruminococcus. The results indicated that the cattle rumen microbiome and the CAZymes are highly complex, structurally similar but compositionally distinct from other ruminants. The unique characteristics of rumen microbiota and the enzymes produced by resident microbes provide opportunities to improve the feed conversion efficiency in ruminants and serve as a reservoir of industrially important enzymes for cellulosic biofuel production.
瘤胃是一个独特的自然栖息地,拥有源自微生物的、用于降解植物多糖的纤维分解酶的无与伦比的遗传资源。本研究的目的是鉴定主要的植物细胞壁降解酶以及与之相关的瘤胃微生物群落的分类概况。通过全宏基因组测序方法对牛瘤胃微生物群和碳水化合物活性酶进行功能分类。利用碳水化合物活性酶分析工具包对组装序列进行分析,确定了编码属于不同糖苷水解酶类(11,010个重叠群)、糖基转移酶(6366个重叠群)、碳水化合物酯酶(4945个重叠群)、碳水化合物结合模块(1975个重叠群)、多糖裂解酶(480个重叠群)和辅助活性(115个重叠群)的纤维分解酶的候选基因。对编码CAZyme的重叠群进行系统发育分析表明,很大一部分CAZyme由普雷沃氏菌属、拟杆菌属、纤维杆菌属、梭菌属和瘤胃球菌属的细菌贡献。结果表明,牛瘤胃微生物组和CAZyme高度复杂,结构相似但组成与其他反刍动物不同。瘤胃微生物群的独特特征以及常驻微生物产生的酶为提高反刍动物的饲料转化效率提供了机会,并作为纤维素生物燃料生产中具有工业重要性的酶的储存库。