Zhuang Xiaohong, Chung Kin Pan, Cui Yong, Lin Weili, Gao Caiji, Kang Byung-Ho, Jiang Liwen
Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):E426-E435. doi: 10.1073/pnas.1616299114. Epub 2017 Jan 4.
Autophagy is a conserved pathway for bulk degradation of cytoplasmic material by a double-membrane structure named the autophagosome. The initiation of autophagosome formation requires the recruitment of autophagy-related protein 9 (ATG9) vesicles to the preautophagosomal structure. However, the functional relationship between ATG9 vesicles and the phagophore is controversial in different systems, and the molecular function of ATG9 remains unknown in plants. Here, we demonstrate that ATG9 is essential for endoplasmic reticulum (ER)-derived autophagosome formation in plants. Through a combination of genetic, in vivo imaging and electron tomography approaches, we show that Arabidopsis ATG9 deficiency leads to a drastic accumulation of autophagosome-related tubular structures in direct membrane continuity with the ER upon autophagic induction. Dynamic analyses demonstrate a transient membrane association between ATG9 vesicles and the autophagosomal membrane during autophagy. Furthermore, trafficking of ATG18a is compromised in atg9 mutants during autophagy by forming extended tubules in a phosphatidylinositol 3-phosphate-dependent manner. Taken together, this study provides evidence for a pivotal role of ATG9 in regulating autophagosome progression from the ER membrane in Arabidopsis.
自噬是一种通过名为自噬体的双膜结构对细胞质物质进行大量降解的保守途径。自噬体形成的起始需要将自噬相关蛋白9(ATG9)囊泡募集到自噬前体结构。然而,在不同系统中,ATG9囊泡与吞噬泡之间的功能关系存在争议,并且ATG9在植物中的分子功能仍然未知。在这里,我们证明ATG9对植物中内质网(ER)衍生的自噬体形成至关重要。通过遗传、体内成像和电子断层扫描方法的结合,我们表明拟南芥ATG9缺陷导致自噬诱导后与内质网直接膜连续的自噬体相关管状结构的急剧积累。动态分析表明,自噬过程中ATG9囊泡与自噬体膜之间存在瞬时膜关联。此外,在自噬过程中,atg9突变体中ATG18a的运输受到损害,通过以磷脂酰肌醇3-磷酸依赖性方式形成延伸的小管。综上所述,这项研究为ATG9在调节拟南芥内质网膜自噬体进程中的关键作用提供了证据。