Mao Keming, Deng Zhuofu
College of Software, Northeastern University, Shenyang, Liaoning Province 110004, China.
Comput Math Methods Med. 2016;2016:1091279. doi: 10.1155/2016/1091279. Epub 2016 Dec 7.
This paper proposes a novel lung nodule classification method for low-dose CT images. The method includes two stages. First, Local Difference Pattern (LDP) is proposed to encode the feature representation, which is extracted by comparing intensity difference along circular regions centered at the lung nodule. Then, the single-center classifier is trained based on LDP. Due to the diversity of feature distribution for different class, the training images are further clustered into multiple cores and the multicenter classifier is constructed. The two classifiers are combined to make the final decision. Experimental results on public dataset show the superior performance of LDP and the combined classifier.
本文提出了一种用于低剂量CT图像的新型肺结节分类方法。该方法包括两个阶段。首先,提出局部差分模式(LDP)来编码特征表示,该特征表示是通过比较以肺结节为中心的圆形区域的强度差异来提取的。然后,基于LDP训练单中心分类器。由于不同类别的特征分布具有多样性,将训练图像进一步聚类为多个核心并构建多中心分类器。将这两个分类器结合起来做出最终决策。在公共数据集上的实验结果表明了LDP和组合分类器的优越性能。