Suppr超能文献

蠕动过渡区是否可能由食管肌肉纤维结构不均匀引起?一项模拟研究。

Could the peristaltic transition zone be caused by non-uniform esophageal muscle fiber architecture? A simulation study.

作者信息

Kou W, Pandolfino J E, Kahrilas P J, Patankar N A

机构信息

Program of Theoretical and Applied Mechanics, Northwestern University, Evanston, IL, USA.

Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

出版信息

Neurogastroenterol Motil. 2017 Jun;29(6). doi: 10.1111/nmo.13022. Epub 2017 Jan 5.

Abstract

BACKGROUND

Based on a fully coupled computational model of esophageal transport, we analyzed how varied esophageal muscle fiber architecture and/or dual contraction waves (CWs) affect bolus transport. Specifically, we studied the luminal pressure profile in those cases to better understand possible origins of the peristaltic transition zone.

METHODS

Two groups of studies were conducted using a computational model. The first studied esophageal transport with circumferential-longitudinal fiber architecture, helical fiber architecture and various combinations of the two. In the second group, cases with dual CWs and varied muscle fiber architecture were simulated. Overall transport characteristics were examined and the space-time profiles of luminal pressure were plotted and compared.

KEY RESULTS

Helical muscle fiber architecture featured reduced circumferential wall stress, greater esophageal distensibility, and greater axial shortening. Non-uniform fiber architecture featured a peristaltic pressure trough between two high-pressure segments. The distal pressure segment showed greater amplitude than the proximal segment, consistent with experimental data. Dual CWs also featured a pressure trough between two high-pressure segments. However, the minimum pressure in the region of overlap was much lower, and the amplitudes of the two high-pressure segments were similar.

CONCLUSIONS & INFERENCES: The efficacy of esophageal transport is greatly affected by muscle fiber architecture. The peristaltic transition zone may be attributable to non-uniform architecture of muscle fibers along the length of the esophagus and/or dual CWs. The difference in amplitude between the proximal and distal pressure segments may be attributable to non-uniform muscle fiber architecture.

摘要

背景

基于食管传输的完全耦合计算模型,我们分析了食管肌肉纤维结构的变化和/或双收缩波(CWs)如何影响食团传输。具体而言,我们研究了这些情况下的腔内压力分布,以更好地理解蠕动过渡区的可能起源。

方法

使用计算模型进行了两组研究。第一组研究了具有环向-纵向纤维结构、螺旋纤维结构以及两者各种组合的食管传输。在第二组中,模拟了具有双CWs和不同肌肉纤维结构的情况。检查了整体传输特性,并绘制和比较了腔内压力的时空分布。

主要结果

螺旋肌纤维结构的特点是周向壁应力降低、食管扩张性增强和轴向缩短更大。不均匀纤维结构的特点是在两个高压段之间有一个蠕动压力谷。远端压力段的幅度大于近端段,与实验数据一致。双CWs在两个高压段之间也有一个压力谷。然而,重叠区域的最小压力要低得多,并且两个高压段的幅度相似。

结论与推论

食管传输的效率受肌肉纤维结构的极大影响。蠕动过渡区可能归因于沿食管长度的肌肉纤维结构不均匀和/或双CWs。近端和远端压力段之间幅度的差异可能归因于肌肉纤维结构不均匀。

相似文献

1
Could the peristaltic transition zone be caused by non-uniform esophageal muscle fiber architecture? A simulation study.
Neurogastroenterol Motil. 2017 Jun;29(6). doi: 10.1111/nmo.13022. Epub 2017 Jan 5.
2
Topography of normal and high-amplitude esophageal peristalsis.
Am J Physiol. 1993 Dec;265(6 Pt 1):G1098-1107. doi: 10.1152/ajpgi.1993.265.6.G1098.
3
Physiology of the esophageal pressure transition zone: separate contraction waves above and below.
Am J Physiol Gastrointest Liver Physiol. 2006 Mar;290(3):G568-76. doi: 10.1152/ajpgi.00280.2005. Epub 2005 Nov 10.
4
Muscle shortening along the normal esophagus during swallowing.
Dig Dis Sci. 2006 Jan;51(1):105-9. doi: 10.1007/s10620-006-3092-4.
5
The mechanical advantage of local longitudinal shortening on peristaltic transport.
J Biomech Eng. 2002 Feb;124(1):94-100. doi: 10.1115/1.1427700.
6
Local longitudinal muscle shortening of the human esophagus from high-frequency ultrasonography.
Am J Physiol Gastrointest Liver Physiol. 2001 Oct;281(4):G1022-33. doi: 10.1152/ajpgi.2001.281.4.G1022.
7
Function of longitudinal vs circular muscle fibers in esophageal peristalsis, deduced with mathematical modeling.
World J Gastroenterol. 2007 Mar 7;13(9):1335-46. doi: 10.3748/wjg.v13.i9.1335.
8
Velocity of peristaltic propagation in distal esophageal segments.
Dig Dis Sci. 1995 Jun;40(6):1311-6. doi: 10.1007/BF02065544.
9
Effect of increased intra-abdominal pressure on peristalsis in feline esophagus.
Am J Physiol. 1991 Sep;261(3 Pt 1):G417-25. doi: 10.1152/ajpgi.1991.261.3.G417.
10
Topography of the esophageal peristaltic pressure wave.
Am J Physiol. 1991 Oct;261(4 Pt 1):G677-84. doi: 10.1152/ajpgi.1991.261.4.G677.

引用本文的文献

1
A mechanics-based perspective on the pressure-cross-sectional area loop within the esophageal body.
Front Physiol. 2023 Jan 9;13:1066351. doi: 10.3389/fphys.2022.1066351. eCollection 2022.
2
Myotomy technique and esophageal contractility impact blown-out myotomy formation in achalasia: an in silico investigation.
Am J Physiol Gastrointest Liver Physiol. 2022 May 1;322(5):G500-G512. doi: 10.1152/ajpgi.00281.2021. Epub 2022 Feb 16.
3
A fully resolved multiphysics model of gastric peristalsis and bolus emptying in the upper gastrointestinal tract.
Comput Biol Med. 2022 Apr;143:104948. doi: 10.1016/j.compbiomed.2021.104948. Epub 2021 Oct 15.
4
Immersed Methods for Fluid-Structure Interaction.
Annu Rev Fluid Mech. 2020;52:421-448. doi: 10.1146/annurev-fluid-010719-060228. Epub 2019 Sep 5.
5
Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity.
Comput Methods Appl Mech Eng. 2020 Jun 15;365. doi: 10.1016/j.cma.2020.112978. Epub 2020 Apr 18.
6
Topographical plots of esophageal distension and contraction: effects of posture on esophageal peristalsis and bolus transport.
Am J Physiol Gastrointest Liver Physiol. 2019 Apr 1;316(4):G519-G526. doi: 10.1152/ajpgi.00397.2018. Epub 2019 Jan 24.

本文引用的文献

1
A continuum mechanics-based musculo-mechanical model for esophageal transport.
J Comput Phys. 2017 Oct 1;348:433-459. doi: 10.1016/j.jcp.2017.07.025. Epub 2017 Jul 18.
2
A fully resolved active musculo-mechanical model for esophageal transport.
J Comput Phys. 2015 Oct 1;298:446-465. doi: 10.1016/j.jcp.2015.05.049.
3
Simulation studies of circular muscle contraction, longitudinal muscle shortening, and their coordination in esophageal transport.
Am J Physiol Gastrointest Liver Physiol. 2015 Aug 15;309(4):G238-47. doi: 10.1152/ajpgi.00058.2015. Epub 2015 Jun 25.
4
Biomechanical behaviour of oesophageal tissues: material and structural configuration, experimental data and constitutive analysis.
Med Eng Phys. 2009 Nov;31(9):1056-62. doi: 10.1016/j.medengphy.2009.07.003. Epub 2009 Aug 3.
5
Liquid in the gastroesophageal segment promotes reflux, but compliance does not: a mathematical modeling study.
Am J Physiol Gastrointest Liver Physiol. 2008 Nov;295(5):G920-33. doi: 10.1152/ajpgi.90310.2008. Epub 2008 Aug 21.
7
Resolving the three-dimensional myoarchitecture of bovine esophageal wall with diffusion spectrum imaging and tractography.
Cell Tissue Res. 2008 Jun;332(3):461-8. doi: 10.1007/s00441-008-0601-0. Epub 2008 Apr 10.
8
Function of longitudinal vs circular muscle fibers in esophageal peristalsis, deduced with mathematical modeling.
World J Gastroenterol. 2007 Mar 7;13(9):1335-46. doi: 10.3748/wjg.v13.i9.1335.
10
Oesophageal wall stress and muscle hypertrophy in high amplitude oesophageal contractions.
Neurogastroenterol Motil. 2005 Dec;17(6):791-9. doi: 10.1111/j.1365-2982.2005.00693.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验