Suppr超能文献

miRTDL:一种 miRNA 靶标预测的深度学习方法。

MiRTDL: A Deep Learning Approach for miRNA Target Prediction.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2016 Nov;13(6):1161-1169. doi: 10.1109/TCBB.2015.2510002. Epub 2015 Dec 22.

Abstract

MicroRNAs (miRNAs) regulate genes that are associated with various diseases. To better understand miRNAs, the miRNA regulatory mechanism needs to be investigated and the real targets identified. Here, we present miRTDL, a new miRNA target prediction algorithm based on convolutional neural network (CNN). The CNN automatically extracts essential information from the input data rather than completely relying on the input dataset generated artificially when the precise miRNA target mechanisms are poorly known. In this work, the constraint relaxing method is first used to construct a balanced training dataset to avoid inaccurate predictions caused by the existing unbalanced dataset. The miRTDL is then applied to 1,606 experimentally validated miRNA target pairs. Finally, the results show that our miRTDL outperforms the existing target prediction algorithms and achieves significantly higher sensitivity, specificity and accuracy of 88.43, 96.44, and 89.98 percent, respectively. We also investigate the miRNA target mechanism, and the results show that the complementation features are more important than the others.

摘要

微小 RNA(miRNAs)调节与各种疾病相关的基因。为了更好地理解 miRNAs,需要研究 miRNA 的调控机制并识别真正的靶标。在这里,我们提出了 miRTDL,一种基于卷积神经网络(CNN)的新的 miRNA 靶标预测算法。CNN 自动从输入数据中提取重要信息,而不是在精确的 miRNA 靶标机制知之甚少时完全依赖于人工生成的输入数据集。在这项工作中,首先使用约束放松方法构建平衡的训练数据集,以避免由于现有不平衡数据集导致的不准确预测。然后,我们将 miRTDL 应用于 1606 对经过实验验证的 miRNA 靶对。最后,结果表明,我们的 miRTDL 优于现有的靶标预测算法,分别达到了 88.43%、96.44%和 89.98%的灵敏度、特异性和准确性。我们还研究了 miRNA 靶标机制,结果表明互补特征比其他特征更为重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验