Suppr超能文献

瑞典用于产超广谱β-内酰胺酶大肠埃希菌的流行病学分型及暴发检测的多位点可变数目串联重复序列分析评估

Evaluation of MLVA for epidemiological typing and outbreak detection of ESBL-producing Escherichia coli in Sweden.

作者信息

Helldal Lisa, Karami Nahid, Welinder-Olsson Christina, Moore Edward R B, Åhren Christina

机构信息

Department of Infectious Diseases, Institution of Biomedicine, Sahlgrenska Academy and Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Gothenburg, Sweden.

Clinical Microbiology/Section for Bacteriology, Sahlgrenska University Hospital, Guldhedsgatan 10A, 413 46, Gothenburg, Sweden.

出版信息

BMC Microbiol. 2017 Jan 6;17(1):8. doi: 10.1186/s12866-016-0922-1.

Abstract

BACKGROUND

To identify the spread of nosocomial infections and halt outbreak development caused by Escherichia coli that carry multiple antibiotic resistance factors, such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases, is becoming demanding challenges due to the rapid global increase and constant and increasing influx of these bacteria from the community to the hospital setting. Our aim was to assess a reliable and rapid typing protocol for ESBL-E. coli, with the primary focus to screen for possible clonal relatedness between isolates. All clinical ESBL-E. coli isolates, collected from hospitals (n = 63) and the community (n = 41), within a single geographical region over a 6 months period, were included, as well as clinical isolates from a polyclonal outbreak (ST131, n = 9, and ST1444, n = 3). The sporadic cases represented 36 STs, of which eight STs dominated i.e. ST131 (n = 33 isolates), ST648 (n = 10), ST38 (n = 9), ST12 and 69 (each n = 4), ST 167, 405 and 372 (each n = 3). The efficacy of multiple-locus variable number tandem repeat analysis (MLVA) was evaluated using three, seven or ten loci, in comparison with that of pulsed-field gel electrophoresis (PFGE) and multi locus sequence typing (MLST).

RESULTS

MLVA detected 39, 55 and 60 distinct types, respectively, using three (GECM-3), seven (GECM-7) or ten (GECM-10) loci. For GECM-7 and -10, 26 STs included one type and eleven STs each included several types, the corresponding numbers for GECM-3 were 29 and 8. The highest numbers were seen for ST131 (7,7 and 8 types, respectively), ST38 (5,5,8) and ST648 (4,5,5). Good concordance was observed with PFGE and GECM-7 and -10, despite fewer types being identified with MLVA; 78 as compared to 55 and 60 types. The lower discriminatory power of MLVA was primarily seen within the O25b-ST131 lineage (n = 34) and its H30-Rx subclone (n = 21). Epidemiologically unrelated O25b-ST131 isolates were clustered with O25b-ST131 outbreak isolates by MLVA, whereas the ST1444 outbreak isolates were accurately distinguished from unrelated isolates.

CONCLUSION

MLVA, even when using only three loci, represents an easy initial typing tool for epidemiological screening of ESBL-E. coli. For the ST131-O25b linage, complementary methods may be needed to obtain sufficient resolution.

摘要

背景

由于携带多种抗生素耐药因子(如超广谱β-内酰胺酶(ESBLs)和碳青霉烯酶)的大肠杆菌在全球范围内迅速增加,且不断从社区流入医院环境,识别医院感染的传播并阻止由这些细菌引起的疫情暴发正成为一项艰巨挑战。我们的目的是评估一种可靠且快速的ESBL-E. coli分型方案,主要重点是筛查分离株之间可能的克隆相关性。纳入了在6个月期间从单个地理区域内的医院(n = 63)和社区(n = 41)收集的所有临床ESBL-E. coli分离株,以及来自多克隆暴发的临床分离株(ST131,n = 9,和ST1444,n = 3)。散发病例代表36个序列型(STs),其中8个STs占主导地位,即ST131(n = 33株分离株)、ST648(n = 10)、ST38(n = 9)、ST12和69(各n = 4)、ST167、405和372(各n = 3)。使用三个、七个或十个位点评估多位点可变数目串联重复分析(MLVA)的效能,并与脉冲场凝胶电泳(PFGE)和多位点序列分型(MLST)进行比较。

结果

使用三个(GECM-3)、七个(GECM-7)或十个(GECM-10)位点时,MLVA分别检测到39、55和60种不同类型。对于GECM-7和-10,26个STs各包含一种类型,11个STs各包含几种类型,GECM-3的相应数字分别为29和8。ST131(分别为7、7和8种类型)、ST38(5、5、8)和ST648(4、5、5)的类型数最多。尽管MLVA识别出的类型较少,但观察到PFGE与GECM-7和-10之间具有良好的一致性;分别为78种与55种和60种类型。MLVA较低的鉴别力主要见于O25b-ST131谱系(n = 34)及其H30-Rx亚克隆(n = 21)内。通过MLVA,流行病学上无关的O25b-ST131分离株与O25b-ST131暴发分离株聚类在一起,而ST1444暴发分离株与无关分离株能准确区分。

结论

MLVA即使仅使用三个位点,也是用于ESBL-E. coli流行病学筛查的简便初始分型工具。对于ST131-O25b谱系,可能需要补充方法以获得足够的分辨率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/789f/5217547/0ff326a92093/12866_2016_922_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验