Jain Saurabh, Ribbens Annemie, Sima Diana M, Cambron Melissa, De Keyser Jacques, Wang Chenyu, Barnett Michael H, Van Huffel Sabine, Maes Frederik, Smeets Dirk
icometrix Leuven, Belgium.
icometrixLeuven, Belgium; STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Department of Electrical Engineering (ESAT), KU LeuvenLeuven, Belgium.
Front Neurosci. 2016 Dec 19;10:576. doi: 10.3389/fnins.2016.00576. eCollection 2016.
Lesion volume is a meaningful measure in multiple sclerosis (MS) prognosis. Manual lesion segmentation for computing volume in a single or multiple time points is time consuming and suffers from intra and inter-observer variability. In this paper, we present MSmetrix-long: a joint expectation-maximization (EM) framework for two time point white matter (WM) lesion segmentation. MSmetrix-long takes as input a 3D T1-weighted and a 3D FLAIR MR image and segments lesions in three steps: (1) cross-sectional lesion segmentation of the two time points; (2) creation of difference image, which is used to model the lesion evolution; (3) a joint EM lesion segmentation framework that uses output of step (1) and step (2) to provide the final lesion segmentation. The accuracy (Dice score) and reproducibility (absolute lesion volume difference) of MSmetrix-long is evaluated using two datasets. On the first dataset, the median Dice score between MSmetrix-long and expert lesion segmentation was 0.63 and the Pearson correlation coefficient (PCC) was equal to 0.96. On the second dataset, the median absolute volume difference was 0.11 ml. MSmetrix-long is accurate and consistent in segmenting MS lesions. Also, MSmetrix-long compares favorably with the publicly available longitudinal MS lesion segmentation algorithm of Lesion Segmentation Toolbox.
病灶体积是多发性硬化症(MS)预后的一项重要指标。通过手动分割病灶来计算单个或多个时间点的体积既耗时,又存在观察者内和观察者间的差异。在本文中,我们提出了MSmetrix-long:一种用于两个时间点白质(WM)病灶分割的联合期望最大化(EM)框架。MSmetrix-long以3D T1加权磁共振图像和3D液体衰减反转恢复(FLAIR)磁共振图像作为输入,并通过三个步骤分割病灶:(1)对两个时间点进行横断面病灶分割;(2)创建差异图像,用于模拟病灶演变;(3)一个联合EM病灶分割框架,利用步骤(1)和步骤(2)的输出提供最终的病灶分割。使用两个数据集评估了MSmetrix-long的准确性(Dice分数)和可重复性(绝对病灶体积差异)。在第一个数据集上,MSmetrix-long与专家病灶分割之间的中位Dice分数为0.63,皮尔逊相关系数(PCC)等于0.96。在第二个数据集上,中位绝对体积差异为0.11毫升。MSmetrix-long在分割MS病灶方面准确且一致。此外,MSmetrix-long与病灶分割工具箱中公开可用的纵向MS病灶分割算法相比具有优势。