FreeSurfer、FSL-SIENAX 和 SPM 脑容量测量的可重复性和再现性,以及多发性硬化症中病变填充的影响。

Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis.

机构信息

Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Department of Radiology, The First Hospital of Jilin University, Changchun, China.

出版信息

Eur Radiol. 2019 Mar;29(3):1355-1364. doi: 10.1007/s00330-018-5710-x. Epub 2018 Sep 21.

Abstract

OBJECTIVES

To compare the cross-sectional robustness of commonly used volumetric software and effects of lesion filling in multiple sclerosis (MS).

METHODS

Nine MS patients (six females; age 38±13 years, disease duration 7.3±5.2 years) were scanned twice with repositioning on three MRI scanners (Siemens Aera 1.5T, Avanto 1.5T, Trio 3.0T) the same day. Volumetric T-weighted images were processed with FreeSurfer, FSL-SIENAX, SPM and SPM-CAT before and after 3D FLAIR lesion filling with LST. The whole-brain, grey matter (GM) and white matter (WM) volumes were calculated with and without normalisation to the intracranial volume or FSL-SIENAX scaling factor. Robustness was assessed using the coefficient of variation (CoV).

RESULTS

Variability in volumetrics was lower within than between scanners (CoV 0.17-0.96% vs. 0.65-5.0%, p<0.001). All software provided similarly robust segmentations of the brain volume on the same scanner (CoV 0.17-0.28%, p=0.076). Normalisation improved inter-scanner reproducibility in FreeSurfer and SPM-based methods, but the FSL-SIENAX scaling factor did not improve robustness. Generally, SPM-based methods produced the most consistent volumetrics, while FreeSurfer was more robust for WM volumes on different scanners. FreeSurfer had more robust normalised brain and GM volumes on different scanners than FSL-SIENAX (p=0.004). MS lesion filling changed the output of FSL-SIENAX, SPM and SPM-CAT but not FreeSurfer.

CONCLUSIONS

Consistent use of the same scanner is essential and normalisation to the intracranial volume is recommended for multiple scanners. Based on robustness, SPM-based methods are particularly suitable for cross-sectional volumetry. FreeSurfer poses a suitable alternative with WM segmentations less sensitive to MS lesions.

KEY POINTS

• The same scanner should be used for brain volumetry. If different scanners are used, the intracranial volume normalisation improves the FreeSurfer and SPM robustness (but not the FSL scaling factor). • FreeSurfer, FSL and SPM all provide robust measures of the whole brain volume on the same MRI scanner. SPM-based methods overall provide the most robust segmentations (except white matter segmentations on different scanners where FreeSurfer is more robust). • MS lesion filling with Lesion Segmentation Toolbox changes the output of FSL-SIENAX and SPM. FreeSurfer output is not affected by MS lesion filling since it already takes white matter hypointensities into account and is therefore particularly suitable for MS brain volumetry.

摘要

目的

比较常用容积软件的横向稳健性和多发性硬化症(MS)病变填充的影响。

方法

9 名 MS 患者(6 名女性;年龄 38±13 岁,病程 7.3±5.2 年)于同一天在三台 MRI 扫描仪(西门子 Aera 1.5T、Avanto 1.5T、Trio 3.0T)上进行两次重新定位扫描。容积 T2 加权图像使用 FreeSurfer、FSL-SIENAX、SPM 和 SPM-CAT 进行处理,在使用 LST 进行 3D FLAIR 病变填充前后进行处理。全脑、灰质(GM)和白质(WM)体积分别使用颅内体积或 FSL-SIENAX 标化因子归一化和不归一化进行计算。稳健性使用变异系数(CoV)进行评估。

结果

扫描仪内的体积变异性低于扫描仪间(CV 0.17-0.96%与 0.65-5.0%,p<0.001)。所有软件在同一台扫描仪上提供了相似的脑体积分割(CV 0.17-0.28%,p=0.076)。在 FreeSurfer 和基于 SPM 的方法中,归一化提高了扫描仪间的可重复性,但 FSL-SIENAX 标化因子并未提高稳健性。总体而言,基于 SPM 的方法产生的体积最为一致,而 FreeSurfer 在不同扫描仪上对 WM 体积的稳健性更高。FreeSurfer 在不同扫描仪上的脑和 GM 体积归一化稳健性均优于 FSL-SIENAX(p=0.004)。MS 病变填充改变了 FSL-SIENAX、SPM 和 SPM-CAT 的输出,但不改变 FreeSurfer 的输出。

结论

对于脑容积测量,应始终使用相同的扫描仪。如果使用不同的扫描仪,颅内体积归一化将提高 FreeSurfer 和 SPM 的稳健性(但不提高 FSL 标化因子)。基于稳健性,基于 SPM 的方法特别适合用于横向容积测量。FreeSurfer 是一种合适的替代方法,其 WM 分割对 MS 病变不太敏感。

关键点

  1. 脑容积测量应使用同一台扫描仪。如果使用不同的扫描仪,颅内体积归一化可提高 FreeSurfer 和 SPM 的稳健性(但不提高 FSL 标化因子)。

  2. FreeSurfer、FSL 和 SPM 在同一台 MRI 扫描仪上均提供了稳健的全脑体积测量。基于 SPM 的方法总体上提供了最稳健的分割(但在不同扫描仪上的 WM 分割除外,此时 FreeSurfer 更稳健)。

  3. MS 病变填充使用病变分割工具(Lesion Segmentation Toolbox)会改变 FSL-SIENAX 和 SPM 的输出。FreeSurfer 的输出不受 MS 病变填充的影响,因为它已经考虑到了 WM 低信号,因此特别适合用于 MS 脑容积测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9992/6510869/52806a4d5b69/330_2018_5710_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索