Suppr超能文献

用于自由活动啮齿动物的虚拟现实笼舍扩展中的空间认知。

Spatial cognition in a virtual reality home-cage extension for freely moving rodents.

作者信息

Kaupert Ursula, Thurley Kay, Frei Katja, Bagorda Francesco, Schatz Alexej, Tocker Gilad, Rapoport Sophie, Derdikman Dori, Winter York

机构信息

Cognitive Neurobiology, Humboldt-Universität zu Berlin, Berlin, Germany.

Department Biology II, Ludwig-Maximilians-Universität München, München, Germany.

出版信息

J Neurophysiol. 2017 Apr 1;117(4):1736-1748. doi: 10.1152/jn.00630.2016. Epub 2017 Jan 11.

Abstract

Virtual reality (VR) environments are a powerful tool to investigate brain mechanisms involved in the behavior of animals. With this technique, animals are usually head fixed or secured in a harness, and training for cognitively more complex VR paradigms is time consuming. A VR apparatus allowing free animal movement and the constant operator-independent training of tasks would enable many new applications. Key prospective usages include brain imaging of animal behavior when carrying a miniaturized mobile device such as a fluorescence microscope or an optetrode. Here, we introduce the Servoball, a spherical VR treadmill based on the closed-loop tracking of a freely moving animal and feedback counterrotation of the ball. Furthermore, we present the complete integration of this experimental system with the animals' group home cage, from which single individuals can voluntarily enter through a tunnel with radio-frequency identification (RFID)-automated access control and commence experiments. This automated animal sorter functions as a mechanical replacement of the experimenter. We automatically trained rats using visual or acoustic cues to solve spatial cognitive tasks and recorded spatially modulated entorhinal cells. When electrophysiological extracellular recordings from awake behaving rats were performed, head fixation can dramatically alter results, so that any complex behavior that requires head movement is impossible to achieve. We circumvented this problem with the use of the Servoball in open-field scenarios, as it allows the combination of open-field behavior with the recording of nerve cells, along with all the flexibility that a virtual environment brings. This integrated home cage with a VR arena experimental system permits highly efficient experimentation for complex cognitive experiments. Virtual reality (VR) environments are a powerful tool for the investigation of brain mechanisms. We introduce the Servoball, a VR treadmill for freely moving rodents. The Servoball is integrated with the animals' group home cage. Single individuals voluntarily enter using automated access control. Training is highly time-efficient, even for cognitively complex VR paradigms.

摘要

虚拟现实(VR)环境是研究动物行为所涉及大脑机制的强大工具。运用这项技术时,动物通常头部固定或被固定在背带中,而针对认知上更复杂的VR范式进行训练十分耗时。一种允许动物自由活动且能持续进行与操作员无关的任务训练的VR设备将带来许多新应用。关键的潜在用途包括在动物携带小型移动设备(如荧光显微镜或光电极)时对其行为进行脑成像。在此,我们介绍Servoball,一种基于对自由移动动物的闭环跟踪和球的反馈反向旋转的球形VR跑步机。此外,我们展示了这个实验系统与动物群居笼舍的完全整合,单个动物可以通过带有射频识别(RFID)自动门禁控制的隧道自愿进入并开始实验。这种自动动物分选器起到了实验者的机械替代作用。我们使用视觉或听觉线索对大鼠进行自动训练以解决空间认知任务,并记录空间调制的内嗅细胞。当对清醒行为大鼠进行电生理细胞外记录时,头部固定会显著改变结果,以至于任何需要头部移动的复杂行为都无法实现。我们在开放场地场景中使用Servoball规避了这个问题,因为它允许将开放场地行为与神经细胞记录相结合,以及虚拟环境所带来的所有灵活性。这种带有VR竞技场实验系统的整合群居笼舍允许对复杂认知实验进行高效实验。虚拟现实(VR)环境是研究大脑机制的强大工具。我们介绍Servoball,一种用于自由移动啮齿动物的VR跑步机。Servoball与动物群居笼舍整合在一起。单个动物通过自动门禁控制自愿进入。即使对于认知复杂的VR范式,训练也具有很高的时间效率。

相似文献

2
Rats are able to navigate in virtual environments.大鼠能够在虚拟环境中导航。
J Exp Biol. 2005 Feb;208(Pt 3):561-9. doi: 10.1242/jeb.01371.
5
Mongolian gerbils learn to navigate in complex virtual spaces.蒙古沙鼠学会在复杂的虚拟空间中导航。
Behav Brain Res. 2014 Jun 1;266:161-8. doi: 10.1016/j.bbr.2014.03.007. Epub 2014 Mar 12.
8
Moving through virtual reality without moving?不动却能在虚拟现实中移动?
Cogn Process. 2012 Aug;13 Suppl 1:S293-7. doi: 10.1007/s10339-012-0491-7.

引用本文的文献

2
Development of an IntelliCage-based cognitive bias test for mice.基于智能笼的小鼠认知偏差测试的开发。
Open Res Eur. 2023 Aug 8;2:128. doi: 10.12688/openreseurope.15294.2. eCollection 2022.
4
Naturalistic neuroscience and virtual reality.自然主义神经科学与虚拟现实
Front Syst Neurosci. 2022 Nov 17;16:896251. doi: 10.3389/fnsys.2022.896251. eCollection 2022.
8
Cholinergic modulation of spatial learning, memory and navigation.胆碱能调制空间学习、记忆和导航。
Eur J Neurosci. 2018 Sep;48(5):2199-2230. doi: 10.1111/ejn.14089. Epub 2018 Aug 19.

本文引用的文献

1
Virtual reality systems for rodents.用于啮齿动物的虚拟现实系统。
Curr Zool. 2017 Feb;63(1):109-119. doi: 10.1093/cz/zow070. Epub 2016 Jun 30.
3
Estimation of self-motion duration and distance in rodents.啮齿动物自我运动持续时间和距离的估计。
R Soc Open Sci. 2016 May 25;3(5):160118. doi: 10.1098/rsos.160118. eCollection 2016 May.
4
EEG and functional ultrasound imaging in mobile rats.移动大鼠的脑电图和功能超声成像
Nat Methods. 2015 Sep;12(9):831-4. doi: 10.1038/nmeth.3506. Epub 2015 Aug 3.
9
Mongolian gerbils learn to navigate in complex virtual spaces.蒙古沙鼠学会在复杂的虚拟空间中导航。
Behav Brain Res. 2014 Jun 1;266:161-8. doi: 10.1016/j.bbr.2014.03.007. Epub 2014 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验