Suppr超能文献

腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶的表面增强超拉曼光谱

Surface-Enhanced Hyper-Raman Spectra of Adenine, Guanine, Cytosine, Thymine, and Uracil.

作者信息

Madzharova Fani, Heiner Zsuzsanna, Gühlke Marina, Kneipp Janina

机构信息

Department of Chemistry, Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2, 12489 Berlin, Germany.

Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany; School of Analytical Sciences Adlershof SALSA, Humboldt-Universität zu Berlin, Albert-Einstein-Strasse 5-11, 12489 Berlin, Germany.

出版信息

J Phys Chem C Nanomater Interfaces. 2016 Jul 21;120(28):15415-15423. doi: 10.1021/acs.jpcc.6b02753. Epub 2016 Jun 28.

Abstract

Using picosecond excitation at 1064 nm, surface-enhanced hyper-Raman scattering (SEHRS) spectra of the nucleobases adenine, guanine, cytosine, thymine, and uracil with two different types of silver nanoparticles were obtained. Comparing the SEHRS spectra with SERS data from the identical samples excited at 532 nm and with known infrared spectra, the major bands in the spectra are assigned. Due to the different selection rules for the one- and two-photon excited Raman scattering, we observe strong variation in relative signal strengths of many molecular vibrations obtained in SEHRS and SERS spectra. The two-photon excited spectra of the nucleobases are found to be very sensitive with respect to molecule-nanoparticle interactions. Using both the SEHRS and SERS data, a comprehensive vibrational characterization of the interaction of nucleobases with silver nanostructures can be achieved.

摘要

利用1064 nm的皮秒激发光,获得了腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶这几种核碱基与两种不同类型银纳米颗粒的表面增强超拉曼散射(SEHRS)光谱。将SEHRS光谱与在532 nm激发的相同样品的表面增强拉曼散射(SERS)数据以及已知红外光谱进行比较,对光谱中的主要谱带进行了归属。由于单光子和双光子激发拉曼散射的选择规则不同,我们观察到在SEHRS和SERS光谱中获得的许多分子振动的相对信号强度有很大变化。发现核碱基的双光子激发光谱对分子 - 纳米颗粒相互作用非常敏感。利用SEHRS和SERS数据,可以实现对核碱基与银纳米结构相互作用的全面振动表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c9a/5215682/8f5ff2cedd6f/jp-2016-027539_0008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验