Suppr超能文献

基于集成支持向量机从 RNA 转录组中检测 N6-甲基腺苷位点。

Detecting N-methyladenosine sites from RNA transcriptomes using ensemble Support Vector Machines.

机构信息

School of Science, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan 063009, China.

School of Computer Science and Technology, Tianjin University, Tianjin 300354, China.

出版信息

Sci Rep. 2017 Jan 12;7:40242. doi: 10.1038/srep40242.

Abstract

As one of the most abundant RNA post-transcriptional modifications, N-methyladenosine (mA) involves in a broad spectrum of biological and physiological processes ranging from mRNA splicing and stability to cell differentiation and reprogramming. However, experimental identification of mA sites is expensive and laborious. Therefore, it is urgent to develop computational methods for reliable prediction of mA sites from primary RNA sequences. In the current study, a new method called RAM-ESVM was developed for detecting mA sites from Saccharomyces cerevisiae transcriptome, which employed ensemble support vector machine classifiers and novel sequence features. The jackknife test results show that RAM-ESVM outperforms single support vector machine classifiers and other existing methods, indicating that it would be a useful computational tool for detecting mA sites in S. cerevisiae. Furthermore, a web server named RAM-ESVM was constructed and could be freely accessible at http://server.malab.cn/RAM-ESVM/.

摘要

作为最丰富的 RNA 转录后修饰之一,N6-甲基腺苷(m6A)参与了从 mRNA 剪接和稳定性到细胞分化和重编程等广泛的生物学和生理学过程。然而,m6A 位点的实验鉴定既昂贵又费力。因此,迫切需要开发从原始 RNA 序列可靠预测 m6A 位点的计算方法。在本研究中,开发了一种名为 RAM-ESVM 的新方法,用于检测酿酒酵母转录组中的 m6A 位点,该方法采用了集成支持向量机分类器和新颖的序列特征。Jackknife 测试结果表明,RAM-ESVM 优于单支持向量机分类器和其他现有方法,表明它将成为检测酿酒酵母中 m6A 位点的有用计算工具。此外,构建了一个名为 RAM-ESVM 的网络服务器,并可在 http://server.malab.cn/RAM-ESVM/ 上免费访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7535/5227715/65db583afa5e/srep40242-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验