Suppr超能文献

用于傅里叶叠层显微镜的自适应背景干扰去除

Adaptive background interference removal for Fourier ptychographic microscopy.

作者信息

Hou Lexin, Wang Hexin, Sticker Markus, Stoppe Lars, Wang Junhua, Xu Min

出版信息

Appl Opt. 2018 Mar 1;57(7):1575-1580. doi: 10.1364/AO.57.001575.

Abstract

Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging method that achieves both high resolution (HR) and wide field of view. In the conventional FPM model, the sample is assumed to be a 2D thin layer, and a series of low-resolution images at different illumination angles is used for HR image reconstruction. However, in practice, the sample complex amplitude distribution is usually mixed with some unknown background interferences. These background interferences may result from inhomogeneous media distribution or other defocusing layers, etc. The background interference will significantly degrade FPM reconstruction results, but so far it is not considered in the conventional FPM algorithm. Here, we propose a method that adaptively separates background interferences for each illumination angle. Experimental results show that the proposed method has a faster convergence speed and better reconstruction accuracy than the conventional FPM model.

摘要

傅里叶叠层显微镜术(FPM)是一种最近提出的计算成像方法,它能同时实现高分辨率(HR)和宽视场。在传统的FPM模型中,假设样本为二维薄层,并使用一系列不同照明角度下的低分辨率图像进行高分辨率图像重建。然而,在实际中,样本复振幅分布通常会与一些未知的背景干扰混合在一起。这些背景干扰可能源于介质分布不均匀或其他散焦层等。背景干扰会显著降低FPM的重建结果,但到目前为止,传统的FPM算法并未考虑这一点。在此,我们提出一种方法,能针对每个照明角度自适应地分离背景干扰。实验结果表明,与传统的FPM模型相比,该方法具有更快的收敛速度和更好的重建精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验