Suppr超能文献

利用谷歌趋势对寨卡疫情进行动态预测

Dynamic Forecasting of Zika Epidemics Using Google Trends.

作者信息

Teng Yue, Bi Dehua, Xie Guigang, Jin Yuan, Huang Yong, Lin Baihan, An Xiaoping, Feng Dan, Tong Yigang

机构信息

Beijing Institute of Microbiology and Epidemiology, Beijing, China.

State Key Laboratory of Pathogen and Biosecurity, Beijing, China.

出版信息

PLoS One. 2017 Jan 6;12(1):e0165085. doi: 10.1371/journal.pone.0165085. eCollection 2017.

Abstract

We developed a dynamic forecasting model for Zika virus (ZIKV), based on real-time online search data from Google Trends (GTs). It was designed to provide Zika virus disease (ZVD) surveillance and detection for Health Departments, and predictive numbers of infection cases, which would allow them sufficient time to implement interventions. In this study, we found a strong correlation between Zika-related GTs and the cumulative numbers of reported cases (confirmed, suspected and total cases; p<0.001). Then, we used the correlation data from Zika-related online search in GTs and ZIKV epidemics between 12 February and 20 October 2016 to construct an autoregressive integrated moving average (ARIMA) model (0, 1, 3) for the dynamic estimation of ZIKV outbreaks. The forecasting results indicated that the predicted data by ARIMA model, which used the online search data as the external regressor to enhance the forecasting model and assist the historical epidemic data in improving the quality of the predictions, are quite similar to the actual data during ZIKV epidemic early November 2016. Integer-valued autoregression provides a useful base predictive model for ZVD cases. This is enhanced by the incorporation of GTs data, confirming the prognostic utility of search query based surveillance. This accessible and flexible dynamic forecast model could be used in the monitoring of ZVD to provide advanced warning of future ZIKV outbreaks.

摘要

我们基于谷歌趋势(GTs)的实时在线搜索数据,开发了一种针对寨卡病毒(ZIKV)的动态预测模型。该模型旨在为卫生部门提供寨卡病毒病(ZVD)监测与检测,并预测感染病例数,以便他们有足够时间实施干预措施。在本研究中,我们发现与寨卡相关的GTs数据和报告病例的累计数量(确诊、疑似及总病例数;p<0.001)之间存在很强的相关性。然后,我们利用2016年2月12日至10月20日期间GTs中与寨卡相关的在线搜索数据和寨卡病毒疫情的相关数据,构建了自回归积分滑动平均(ARIMA)模型(0, 1, 3),用于动态估计寨卡病毒的爆发情况。预测结果表明,以在线搜索数据作为外部回归变量来增强预测模型,并辅助历史疫情数据以提高预测质量的ARIMA模型预测数据,与2016年11月初寨卡病毒疫情期间的实际数据非常相似。整数自回归为寨卡病毒病病例提供了一个有用的基础预测模型。通过纳入GTs数据,这一模型得到了增强,证实了基于搜索查询的监测在预后方面的效用。这种易于获取且灵活的动态预测模型可用于寨卡病毒病的监测,为未来寨卡病毒的爆发提供预警。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e407/5217860/3a29a47c5f4a/pone.0165085.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验