Suppr超能文献

锰超氧化物歧化酶和谷胱甘肽过氧化物酶-1 有助于线粒体活性氧的产生和减少,而这些活性氧会驱动肿瘤的发生。

Manganese superoxide dismutase and glutathione peroxidase-1 contribute to the rise and fall of mitochondrial reactive oxygen species which drive oncogenesis.

机构信息

Department of Pathology and Medicine, University of Illinois at Chicago, Chicago, IL, United States.

Department of Pathology and Medicine, University of Illinois at Chicago, Chicago, IL, United States.

出版信息

Biochim Biophys Acta Bioenerg. 2017 Aug;1858(8):628-632. doi: 10.1016/j.bbabio.2017.01.006. Epub 2017 Jan 11.

Abstract

Reactive oxygen species (ROS) largely originating in the mitochondria play essential roles in the metabolic and (epi)genetic reprogramming of cancer cell evolution towards more aggressive phenotypes. Recent studies have indicated that the activity of superoxide dismutase (SOD2) may promote tumor progression by serving as a source of hydrogen peroxide (HO). HO is a form of ROS that is particularly active as a redox agent affecting cell signaling due to its ability to freely diffuse out of the mitochondria and alter redox active amino acid residues on regulatory proteins. Therefore, there is likely a dichotomy whereas SOD2 can be considered a protective antioxidant, as well as a pro-oxidant during cancer progression, with these effects depending on the accumulation and detoxification of HO. Glutathione peroxidase-1 GPX1, is a selenium-dependent scavenger of HO which partitions between the mitochondria and the cytosol. Epidemiologic studies indicated that allelic variations in the SOD2 and GPX1 genes alter the distribution and relative concentrations of SOD2 and GPX1 in mitochondria, thereby affecting the dynamic between the production and elimination of HO. Experimental and epidemiological evidence supporting a conflicting role of SOD2 in tumor biology, and epidemiological evidence that SOD2 and GPX1 can interact to affect cancer risk and progression indicated that it is the net accumulation of mitochondrial HO (mtHO) resulting from of the balance between the activities SOD2 and anti-oxidants such as GPX1 that determines whether SOD2 prevents or promotes oncogenesis. In this review, research supporting the idea that GPX1 is a gatekeeper restraining the oncogenic power of mitochondrial ROS generated by SOD2 is presented. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.

摘要

活性氧(ROS)主要来源于线粒体,在癌细胞向更具侵袭性表型的代谢和(表观遗传)重编程中发挥着重要作用。最近的研究表明,超氧化物歧化酶 2(SOD2)的活性可能通过作为过氧化氢(HO)的来源促进肿瘤进展。HO 是一种 ROS,由于其能够自由扩散出线粒体并改变调节蛋白上的氧化还原活性氨基酸残基,因此作为一种氧化还原剂特别活跃,影响细胞信号转导。因此,SOD2 可能存在一种二分法,即在癌症进展过程中,它既可以被视为一种保护性抗氧化剂,也可以被视为一种促氧化剂,这些作用取决于 HO 的积累和解毒。谷胱甘肽过氧化物酶 1(GPX1)是 HO 的硒依赖性清除剂,可在线粒体和细胞质之间分配。流行病学研究表明,SOD2 和 GPX1 基因的等位基因变异改变了线粒体中 SOD2 和 GPX1 的分布和相对浓度,从而影响了 HO 的产生和消除之间的动态平衡。实验和流行病学证据支持 SOD2 在肿瘤生物学中具有矛盾作用,以及 SOD2 和 GPX1 可以相互作用影响癌症风险和进展的流行病学证据表明,正是 SOD2 和抗氧化剂(如 GPX1)活性之间的平衡导致线粒体 HO(mtHO)的净积累,决定了 SOD2 是预防还是促进致癌作用。在这篇综述中,提出了支持 GPX1 是一种控制 SOD2 产生的线粒体 ROS 的致癌能力的守门员的观点。本文是题为“癌症中的线粒体”的特刊的一部分,由 Giuseppe Gasparre、Rodrigue Rossignol 和 Pierre Sonveaux 编辑。

相似文献

引用本文的文献

本文引用的文献

4
Mitochondrial reactive oxygen species and cancer.线粒体活性氧与癌症。
Cancer Metab. 2014 Nov 28;2:17. doi: 10.1186/2049-3002-2-17. eCollection 2014.
7
ROS-dependent signal transduction.活性氧依赖性信号转导
Curr Opin Cell Biol. 2015 Apr;33:8-13. doi: 10.1016/j.ceb.2014.09.010. Epub 2014 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验