Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Cell Stem Cell. 2024 May 2;31(5):640-656.e8. doi: 10.1016/j.stem.2024.03.016.
Post-implantation, the pluripotent epiblast in a human embryo forms a central lumen, paving the way for gastrulation. Osmotic pressure gradients are considered the drivers of lumen expansion across development, but their role in human epiblasts is unknown. Here, we study lumenogenesis in a pluripotent-stem-cell-based epiblast model using engineered hydrogels. We find that leaky junctions prevent osmotic pressure gradients in early epiblasts and, instead, forces from apical actin polymerization drive lumen expansion. Once the lumen reaches a radius of ∼12 μm, tight junctions mature, and osmotic pressure gradients develop to drive further growth. Computational modeling indicates that apical actin polymerization into a stiff network mediates initial lumen expansion and predicts a transition to pressure-driven growth in larger epiblasts to avoid buckling. Human epiblasts show transcriptional signatures consistent with these mechanisms. Thus, actin polymerization drives lumen expansion in the human epiblast and may serve as a general mechanism of early lumenogenesis.
胚胎植入后,人类胚胎中的多能上胚层形成中央腔,为原肠胚形成铺平道路。渗透压梯度被认为是跨发育过程中腔扩张的驱动力,但它们在人类上胚层中的作用尚不清楚。在这里,我们使用工程化水凝胶研究基于多能干细胞的上胚层模型中的腔发生。我们发现,渗漏连接阻止了早期上胚层中的渗透压梯度,相反,来自顶端肌动蛋白聚合的力驱动腔扩张。一旦腔达到约 12μm 的半径,紧密连接成熟,渗透压梯度发展以驱动进一步生长。计算模型表明,顶端肌动蛋白聚合到刚性网络中介导初始腔扩张,并预测在较大的上胚层中向压力驱动的生长的转变,以避免屈曲。人类上胚层显示出与这些机制一致的转录特征。因此,肌动蛋白聚合驱动人类上胚层的腔扩张,并且可能作为早期腔发生的一般机制。