Suppr超能文献

利用基因组编辑的基因驱动增加家畜育种计划中遗传增益的潜力。

Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs.

作者信息

Gonen Serap, Jenko Janez, Gorjanc Gregor, Mileham Alan J, Whitelaw C Bruce A, Hickey John M

机构信息

The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Scotland, UK.

Genus plc, 1525 River Road, DeForest, WI, 53532, USA.

出版信息

Genet Sel Evol. 2017 Jan 4;49(1):3. doi: 10.1186/s12711-016-0280-3.

Abstract

BACKGROUND

This paper uses simulation to explore how gene drives can increase genetic gain in livestock breeding programs. Gene drives are naturally occurring phenomena that cause a mutation on one chromosome to copy itself onto its homologous chromosome.

METHODS

We simulated nine different breeding and editing scenarios with a common overall structure. Each scenario began with 21 generations of selection, followed by 20 generations of selection based on true breeding values where the breeder used selection alone, selection in combination with genome editing, or selection with genome editing and gene drives. In the scenarios that used gene drives, we varied the probability of successfully incorporating the gene drive. For each scenario, we evaluated genetic gain, genetic variance [Formula: see text], rate of change in inbreeding ([Formula: see text]), number of distinct quantitative trait nucleotides (QTN) edited, rate of increase in favourable allele frequencies of edited QTN and the time to fix favourable alleles.

RESULTS

Gene drives enhanced the benefits of genome editing in seven ways: (1) they amplified the increase in genetic gain brought about by genome editing; (2) they amplified the rate of increase in the frequency of favourable alleles and reduced the time it took to fix them; (3) they enabled more rapid targeting of QTN with lesser effect for genome editing; (4) they distributed fixed editing resources across a larger number of distinct QTN across generations; (5) they focussed editing on a smaller number of QTN within a given generation; (6) they reduced the level of inbreeding when editing a subset of the sires; and (7) they increased the efficiency of converting genetic variation into genetic gain.

CONCLUSIONS

Genome editing in livestock breeding results in short-, medium- and long-term increases in genetic gain. The increase in genetic gain occurs because editing increases the frequency of favourable alleles in the population. Gene drives accelerate the increase in allele frequency caused by editing, which results in even higher genetic gain over a shorter period of time with no impact on inbreeding.

摘要

背景

本文利用模拟研究基因驱动如何提高家畜育种计划中的遗传增益。基因驱动是一种自然发生的现象,会使一条染色体上的突变复制到其同源染色体上。

方法

我们模拟了九种具有共同总体结构的不同育种和编辑方案。每个方案都先进行21代选择,然后基于真实育种值进行20代选择,育种者在这些选择过程中单独使用选择方法、将选择与基因组编辑相结合,或者将选择与基因组编辑及基因驱动相结合。在使用基因驱动的方案中,我们改变了成功整合基因驱动的概率。对于每个方案,我们评估了遗传增益、遗传方差[公式:见正文]、近交系数变化率([公式:见正文])、编辑的不同数量性状核苷酸(QTN)的数量、编辑的QTN中有利等位基因频率的增加率以及固定有利等位基因的时间。

结果

基因驱动从七个方面增强了基因组编辑的益处:(1) 它们放大了基因组编辑带来的遗传增益增加;(2) 它们放大了有利等位基因频率的增加率,并缩短了固定这些等位基因所需的时间;(3) 它们能够更快速地靶向对基因组编辑影响较小的QTN;(4) 它们在几代中把固定的编辑资源分布到更多不同的QTN上;(5) 它们在给定世代中将编辑集中在较少数量的QTN上;(6) 当编辑一部分父本时,它们降低了近交水平;(7) 它们提高了将遗传变异转化为遗传增益的效率。

结论

家畜育种中的基因组编辑会导致遗传增益在短期、中期和长期内增加。遗传增益的增加是因为编辑提高了群体中有利等位基因的频率。基因驱动加速了由编辑引起的等位基因频率增加,这导致在更短时间内获得更高的遗传增益,且对近交没有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b806/5240390/979ad9d1e499/12711_2016_280_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验