Suppr超能文献

以尖峰为中心的抖动会误判时间结构。

Spike-Centered Jitter Can Mistake Temporal Structure.

作者信息

Platkiewicz Jonathan, Stark Eran, Amarasingham Asohan

机构信息

Department of Mathematics, City College of New York, City University of New York, NY 10031, U.S.A., and NYU Neuroscience Institute, School of Medicine, New York University, New York, NY 10016, U.S.A.

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel

出版信息

Neural Comput. 2017 Mar;29(3):783-803. doi: 10.1162/NECO_a_00927. Epub 2017 Jan 17.

Abstract

Jitter-type spike resampling methods are routinely applied in neurophysiology for detecting temporal structure in spike trains (point processes). Several variations have been proposed. The concern has been raised, based on numerical experiments involving Poisson spike processes, that such procedures can be conservative. We study the issue and find it can be resolved by reemphasizing the distinction between spike-centered (basic) jitter and interval jitter. Focusing on spiking processes with no temporal structure, interval jitter generates an exact hypothesis test, guaranteeing valid conclusions. In contrast, such a guarantee is not available for spike-centered jitter. We construct explicit examples in which spike-centered jitter hallucinates temporal structure, in the sense of exaggerated false-positive rates. Finally, we illustrate numerically that Poisson approximations to jitter computations, while computationally efficient, can also result in inaccurate hypothesis tests. We highlight the value of classical statistical frameworks for guiding the design and interpretation of spike resampling methods.

摘要

抖动型尖峰重采样方法在神经生理学中经常用于检测尖峰序列(点过程)中的时间结构。已经提出了几种变体。基于涉及泊松尖峰过程的数值实验,有人担心此类程序可能过于保守。我们研究了这个问题,发现通过重新强调以尖峰为中心(基本)抖动和间隔抖动之间的区别可以解决该问题。对于没有时间结构的尖峰过程,间隔抖动产生了一个精确的假设检验,保证了有效的结论。相比之下,以尖峰为中心的抖动则无法保证这一点。我们构建了明确的例子,其中以尖峰为中心的抖动在夸大的假阳性率的意义上产生了虚假的时间结构。最后,我们通过数值说明,抖动计算的泊松近似虽然计算效率高,但也可能导致不准确的假设检验。我们强调经典统计框架对于指导尖峰重采样方法的设计和解释的价值。

相似文献

1
Spike-Centered Jitter Can Mistake Temporal Structure.以尖峰为中心的抖动会误判时间结构。
Neural Comput. 2017 Mar;29(3):783-803. doi: 10.1162/NECO_a_00927. Epub 2017 Jan 17.
2
Conditional modeling and the jitter method of spike resampling.条件建模和尖峰重采样的抖动方法。
J Neurophysiol. 2012 Jan;107(2):517-31. doi: 10.1152/jn.00633.2011. Epub 2011 Oct 26.
4
Statistical properties of superimposed stationary spike trains.叠加平稳脉冲序列的统计特性。
J Comput Neurosci. 2012 Jun;32(3):443-63. doi: 10.1007/s10827-011-0362-8. Epub 2011 Oct 1.
8
Ergodicity and parameter estimates in auditory neural circuits.听觉神经回路中的遍历性与参数估计
Biol Cybern. 2018 Apr;112(1-2):41-55. doi: 10.1007/s00422-017-0739-5. Epub 2017 Oct 29.
9
Unbiased estimation of precise temporal correlations between spike trains.对尖峰序列之间精确时间相关性的无偏估计。
J Neurosci Methods. 2009 Apr 30;179(1):90-100. doi: 10.1016/j.jneumeth.2008.12.029. Epub 2009 Jan 9.

引用本文的文献

3
The olivary input to the cerebellum dissociates sensory events from movement plans.橄榄核小脑传入将感觉事件与运动计划分开。
Proc Natl Acad Sci U S A. 2024 Apr 23;121(17):e2318849121. doi: 10.1073/pnas.2318849121. Epub 2024 Apr 17.
4
Uncovering the organization of neural circuits with Generalized Phase Locking Analysis.运用广义相位锁定分析揭示神经回路的组织。
PLoS Comput Biol. 2023 Apr 3;19(4):e1010983. doi: 10.1371/journal.pcbi.1010983. eCollection 2023 Apr.
8
Monosynaptic inference via finely-timed spikes.通过精确计时的尖峰进行单突触推理。
J Comput Neurosci. 2021 May;49(2):131-157. doi: 10.1007/s10827-020-00770-5. Epub 2021 Jan 28.
10
Computational Neuroscience: Mathematical and Statistical Perspectives.计算神经科学:数学与统计视角
Annu Rev Stat Appl. 2018 Mar;5:183-214. doi: 10.1146/annurev-statistics-041715-033733. Epub 2017 Dec 8.

本文引用的文献

2
Ambiguity and nonidentifiability in the statistical analysis of neural codes.神经编码统计分析中的模糊性和不可识别性。
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6455-60. doi: 10.1073/pnas.1506400112. Epub 2015 May 1.
7
Conditional modeling and the jitter method of spike resampling.条件建模和尖峰重采样的抖动方法。
J Neurophysiol. 2012 Jan;107(2):517-31. doi: 10.1152/jn.00633.2011. Epub 2011 Oct 26.
8
Surrogate spike train generation through dithering in operational time.通过在运行时间中抖动来生成替代尖峰序列。
Front Comput Neurosci. 2010 Sep 22;4:127. doi: 10.3389/fncom.2010.00127. eCollection 2010.
9
Unbiased estimation of precise temporal correlations between spike trains.对尖峰序列之间精确时间相关性的无偏估计。
J Neurosci Methods. 2009 Apr 30;179(1):90-100. doi: 10.1016/j.jneumeth.2008.12.029. Epub 2009 Jan 9.
10
Data-driven significance estimation for precise spike correlation.用于精确尖峰相关性的数据驱动显著性估计。
J Neurophysiol. 2009 Mar;101(3):1126-40. doi: 10.1152/jn.00093.2008. Epub 2009 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验