Suppr超能文献

通过精确计时的尖峰进行单突触推理。

Monosynaptic inference via finely-timed spikes.

作者信息

Platkiewicz Jonathan, Saccomano Zachary, McKenzie Sam, English Daniel, Amarasingham Asohan

机构信息

Department of Mathematics, The City College of New York, The City University of New York, New York, NY, 10031, USA.

Department of Biology, The Graduate Center, The City University of New York, New York, NY, 10016, USA.

出版信息

J Comput Neurosci. 2021 May;49(2):131-157. doi: 10.1007/s10827-020-00770-5. Epub 2021 Jan 28.

Abstract

Observations of finely-timed spike relationships in population recordings have been used to support partial reconstruction of neural microcircuit diagrams. In this approach, fine-timescale components of paired spike train interactions are isolated and subsequently attributed to synaptic parameters. Recent perturbation studies strengthen the case for such an inference, yet the complete set of measurements needed to calibrate statistical models is unavailable. To address this gap, we study features of pairwise spiking in a large-scale in vivo dataset where presynaptic neurons were explicitly decoupled from network activity by juxtacellular stimulation. We then construct biophysical models of paired spike trains to reproduce the observed phenomenology of in vivo monosynaptic interactions, including both fine-timescale spike-spike correlations and firing irregularity. A key characteristic of these models is that the paired neurons are coupled by rapidly-fluctuating background inputs. We quantify a monosynapse's causal effect by comparing the postsynaptic train with its counterfactual, when the monosynapse is removed. Subsequently, we develop statistical techniques for estimating this causal effect from the pre- and post-synaptic spike trains. A particular focus is the justification and application of a nonparametric separation of timescale principle to implement synaptic inference. Using simulated data generated from the biophysical models, we characterize the regimes in which the estimators accurately identify the monosynaptic effect. A secondary goal is to initiate a critical exploration of neurostatistical assumptions in terms of biophysical mechanisms, particularly with regards to the challenging but arguably fundamental issue of fast, unobservable nonstationarities in background dynamics.

摘要

群体记录中对精确计时的尖峰关系的观察已被用于支持神经微电路图的部分重建。在这种方法中,配对尖峰序列相互作用的精细时间尺度成分被分离出来,随后归因于突触参数。最近的扰动研究强化了这种推断的理由,但校准统计模型所需的完整测量集尚不可用。为了填补这一空白,我们研究了一个大规模体内数据集的成对尖峰特征,在该数据集中,通过细胞旁刺激将突触前神经元与网络活动明确解耦。然后,我们构建成对尖峰序列的生物物理模型,以重现观察到的体内单突触相互作用的现象学,包括精细时间尺度的尖峰-尖峰相关性和放电不规则性。这些模型的一个关键特征是,成对的神经元通过快速波动的背景输入耦合。当去除单突触时,我们通过将突触后序列与其反事实序列进行比较来量化单突触的因果效应。随后,我们开发了统计技术,用于从突触前和突触后尖峰序列估计这种因果效应。特别关注的是应用非参数时间尺度分离原理进行突触推断的合理性和应用。使用从生物物理模型生成的模拟数据,我们刻画了估计器准确识别单突触效应的机制。第二个目标是根据生物物理机制,特别是关于背景动力学中快速、不可观测的非平稳性这一具有挑战性但可说是基本的问题,对神经统计假设进行批判性探索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验