Rhim Issac, Coello-Reyes Gabriela, Ko Hee-Kyoung, Nauhaus Ian
Center for Perceptual Systems, University of Texas, Austin, Texas.
Department of Psychology, University of Texas, Austin, Texas; and.
J Neurophysiol. 2017 Apr 1;117(4):1674-1682. doi: 10.1152/jn.00849.2016. Epub 2017 Jan 18.
Studies in the mouse retina have characterized the spatial distribution of an anisotropic ganglion cell and photoreceptor mosaic, which provides a solid foundation to study how the cortex pools from afferent parallel color channels. In particular, the mouse's retinal mosaic exhibits a gradient of wavelength sensitivity along its dorsoventral axis. Cones at the ventral extreme mainly express S opsin, which is sensitive to ultraviolet (UV) wavelengths. Then, moving toward the retina's dorsal extreme, there is a transition to M-opsin dominance. Here, we tested the hypothesis that the retina's opsin gradient is recapitulated in cortical visual areas as a functional map of wavelength sensitivity. We first identified visual areas in each mouse by mapping retinotopy with intrinsic signal imaging (ISI). Next, we measured ISI responses to stimuli along different directions of the S- and M-color plane to quantify the magnitude of S and M input to each location of the retinotopic maps in five visual cortical areas (V1, AL, LM, PM, and RL). The results illustrate a significant change in the S:M-opsin input ratio along the axis of vertical retinotopy that is consistent with the gradient along the dorsoventral axis of the retina. In particular, V1 populations encoding the upper visual field responded to S-opsin contrast with 6.1-fold greater amplitude than to M-opsin contrast. V1 neurons encoding lower fields responded with 4.6-fold greater amplitude to M- than S-opsin contrast. The maps in V1 and higher visual areas (HVAs) underscore the significance of a wavelength sensitivity gradient for guiding the mouse's behavior. Two elements of this study are particularly novel. For one, it is the first to quantify cone inputs to mouse visual cortex; we have measured cone input in five visual areas. Next, it is the first study to identify a feature map in the mouse visual cortex that is based on well-characterized anisotropy of cones in the retina; we have identified maps of opsin selectivity in five visual areas.
对小鼠视网膜的研究已经描绘出了一种各向异性神经节细胞和光感受器镶嵌的空间分布,这为研究皮层如何从传入的平行颜色通道进行信息整合提供了坚实的基础。特别是,小鼠的视网膜镶嵌在其背腹轴上呈现出波长敏感性梯度。腹侧极端的视锥细胞主要表达对紫外(UV)波长敏感的S视蛋白。然后,向视网膜背侧极端移动时,会过渡到以M视蛋白为主导。在这里,我们测试了这样一个假设,即视网膜的视蛋白梯度在皮层视觉区域中作为波长敏感性的功能图谱被重现。我们首先通过用内在信号成像(ISI)绘制视网膜拓扑图来识别每只小鼠的视觉区域。接下来,我们测量了对S和M颜色平面不同方向刺激的ISI反应,以量化五个视觉皮层区域(V1、AL、LM、PM和RL)中视网膜拓扑图每个位置的S和M输入量。结果表明,沿着垂直视网膜拓扑轴,S:M视蛋白输入比率有显著变化,这与视网膜背腹轴上的梯度一致。特别是,编码上视野的V1群体对S视蛋白对比度的反应幅度比对M视蛋白对比度的反应幅度大6.1倍。编码下视野的V1神经元对M视蛋白对比度的反应幅度比对S视蛋白对比度的反应幅度大4.6倍。V1和更高视觉区域(HVAs)中的图谱强调了波长敏感性梯度对指导小鼠行为的重要性。这项研究的两个方面特别新颖。其一,它是首次对小鼠视觉皮层的视锥细胞输入进行量化;我们在五个视觉区域测量了视锥细胞输入。其二,它是首次在小鼠视觉皮层中识别出基于视网膜中视锥细胞充分表征的各向异性的特征图谱;我们在五个视觉区域识别出了视蛋白选择性图谱。