Université Grenoble Alpes, Institut de Biologie Structurale, 38044 Grenoble, France.
Centre National de la Recherche Scientifique, Institut de Biologie Structurale, 38044 Grenoble, France.
Sci Rep. 2017 Jan 19;7:40948. doi: 10.1038/srep40948.
We present a combination of small-angle neutron scattering, deuterium labelling and contrast variation, temperature activation and fluorescence spectroscopy as a novel approach to obtain time-resolved, structural data individually from macromolecular complexes and their substrates during active biochemical reactions. The approach allowed us to monitor the mechanical unfolding of a green fluorescent protein model substrate by the archaeal AAA+ PAN unfoldase on the sub-minute time scale. Concomitant with the unfolding of its substrate, the PAN complex underwent an energy-dependent transition from a relaxed to a contracted conformation, followed by a slower expansion to its initial state at the end of the reaction. The results support a model in which AAA ATPases unfold their substrates in a reversible power stroke mechanism involving several subunits and demonstrate the general utility of this time-resolved approach for studying the structural molecular kinetics of multiple protein remodelling complexes and their substrates on the sub-minute time scale.
我们提出了一种将小角中子散射、氘标记和对比变化、温度激活以及荧光光谱学相结合的新方法,用于在活跃的生化反应中,从大分子复合物及其底物中分别获得时间分辨的结构数据。该方法使我们能够在亚分钟的时间尺度上监测到绿色荧光蛋白模型底物被古菌 AAA+PAN 解旋酶的机械解折叠过程。与底物的解折叠同时,PAN 复合物经历了一个能量依赖的从松弛到收缩构象的转变,随后在反应结束时缓慢地扩展到初始状态。结果支持了一个模型,即 AAA ATPase 以涉及多个亚基的可逆动力冲程机制来解折叠它们的底物,并证明了这种时间分辨方法在亚分钟时间尺度上研究多个蛋白质重塑复合物及其底物的结构分子动力学的普遍适用性。