Fernandez-Lopez Laura, Pedrero Sara G, Lopez-Carrobles Nerea, Gorines Beatriz C, Virgen-Ortíz Jose J, Fernandez-Lafuente Roberto
Departamento de biocatálisis. Instituto de Catálisis-CSIC, Campus UAM-CSIC Madrid, Spain.
Departamento de biocatálisis. Instituto de Catálisis-CSIC, Campus UAM-CSIC Madrid, Spain; CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Centro de Innovación y Desarrollo Agroalimentario de Michoacán, A.C. (CIDAM), Km. 8 Antigua Carretera a Pátzcuaro s/n, C.P. 58341 Morelia, Michoacán, Mexico.
Enzyme Microb Technol. 2017 Mar;98:18-25. doi: 10.1016/j.enzmictec.2016.12.002. Epub 2016 Dec 16.
Different lipases have been immobilized on octyl agarose beads at 1mg/g and at maximum loading, via physical interfacial activation versus the octyl layer on the support. The stability of the preparations was analyzed. Most biocatalysts had the expected result: the apparent stability increased using the highly loaded preparations, due to the diffusional limitations that reduced the initial observed activity. However, lipase B from Candida antarctica (CALB) was significantly more stable using the lowly loaded preparation than the maximum loaded one. This negative effect of the enzyme crowding on enzyme stability was found in inactivations at pH 5, 7 or 9, but not in inactivations in the presence of organic solvents. The immobilization using ethanol to reduce the immobilization rate had no effect on the stability of the lowly loaded preparation, while the highly loaded enzyme biocatalysts increased their stabilities, becoming very similar to that of the lowly loaded preparation. Results suggested that CALB molecules immobilized on octyl agarose may be closely packed together due to the high immobilization rate and this produced some negative interactions between immobilized enzyme molecules during enzyme thermal inactivation. Slowing-down the immobilization rate may be a solution for this unexpected problem.
不同的脂肪酶已通过与载体上的辛基层进行物理界面活化,以1mg/g的载量和最大载量固定在辛基琼脂糖珠上。对制备物的稳定性进行了分析。大多数生物催化剂得到了预期的结果:由于扩散限制降低了最初观察到的活性,使用高载量制备物时表观稳定性增加。然而,南极假丝酵母脂肪酶B(CALB)在低载量制备物中的稳定性明显高于最大载量制备物。在pH 5、7或9的失活过程中发现了酶聚集对酶稳定性的这种负面影响,但在有机溶剂存在下的失活过程中未发现。使用乙醇降低固定化速率的固定化方法对低载量制备物的稳定性没有影响,而高载量酶生物催化剂的稳定性增加,变得与低载量制备物非常相似。结果表明,由于固定化速率高,固定在辛基琼脂糖上的CALB分子可能紧密堆积在一起,这在酶热失活过程中导致了固定化酶分子之间的一些负面相互作用。减缓固定化速率可能是解决这个意外问题的一种方法。