Wachinger Christian, Golland Polina
Computer Science and Artificial Intelligence Lab, MIT, USA.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):410-7. doi: 10.1007/978-3-642-33454-2_51.
We present a new segmentation approach that combines the strengths of label fusion and spectral clustering. The result is an atlas-based segmentation method guided by contour and texture cues in the test image. This offers advantages for datasets with high variability, making the segmentation less prone to registration errors. We achieve the integration by letting the weights of the graph Laplacian depend on image data, as well as atlas-based label priors. The extracted contours are converted to regions, arranged in a hierarchy depending on the strength of the separating boundary. Finally, we construct the segmentation by a region-wise, instead of voxel-wise, voting, increasing the robustness. Our experiments on cardiac MRI show a clear improvement over majority voting and intensity-weighted label fusion.
我们提出了一种新的分割方法,该方法结合了标签融合和谱聚类的优势。其结果是一种基于图谱的分割方法,由测试图像中的轮廓和纹理线索引导。这对于具有高度变异性的数据集具有优势,使分割更不易出现配准错误。我们通过使图拉普拉斯算子的权重依赖于图像数据以及基于图谱的标签先验来实现这种整合。提取的轮廓被转换为区域,根据分隔边界的强度排列成层次结构。最后,我们通过区域投票而不是体素投票来构建分割,从而提高了鲁棒性。我们在心脏磁共振成像上的实验表明,与多数投票和强度加权标签融合相比有明显改进。