Department of Chemistry, University of California , Berkeley, California 94720, United States.
Kavli Energy NanoScience Institute , Berkeley, California 94720, United States.
Nano Lett. 2017 Feb 8;17(2):1028-1033. doi: 10.1021/acs.nanolett.6b04453. Epub 2017 Jan 30.
The distinct physical properties of hybrid organic-inorganic materials can lead to unexpected nonequilibrium phenomena that are difficult to characterize due to the broad range of length and time scales involved. For instance, mixed halide hybrid perovskites are promising materials for optoelectronics, yet bulk measurements suggest the halides reversibly phase separate upon photoexcitation. By combining nanoscale imaging and multiscale modeling, we find that the nature of halide demixing in these materials is distinct from macroscopic phase separation. We propose that the localized strain induced by a single photoexcited charge interacting with the soft, ionic lattice is sufficient to promote halide phase separation and nucleate a light-stabilized, low-bandgap, ∼8 nm iodide-rich cluster. The limited extent of this polaron is essential to promote demixing because by contrast bulk strain would simply be relaxed. Photoinduced phase separation is therefore a consequence of the unique electromechanical properties of this hybrid class of materials. Exploiting photoinduced phase separation and other nonequilibrium phenomena in hybrid materials more generally could expand applications in sensing, switching, memory, and energy storage.
混合有机-无机材料独特的物理性质可能导致意想不到的非平衡现象,由于涉及的长度和时间尺度范围很广,这些现象很难进行描述。例如,混合卤化物混合钙钛矿是光电应用中很有前途的材料,但体相测量表明卤化物在光激发下会发生可逆的相分离。通过结合纳米尺度成像和多尺度建模,我们发现这些材料中卤化物的离析性质与宏观相分离不同。我们提出,单个光激发电荷与软离子晶格相互作用所产生的局部应变足以促进卤化物相分离,并形成一个稳定的、低带隙、约 8nm 富碘化物的核。这种极化子的有限程度对于促进离析是至关重要的,因为相比之下,体相应变将简单地被释放。因此,光诱导的相分离是这种混合材料独特的机电性质的结果。更广泛地利用混合材料中的光致相分离和其他非平衡现象,可以扩展在传感、开关、存储和能量存储方面的应用。