Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan.
Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan.
Angew Chem Int Ed Engl. 2017 Mar 6;56(11):3025-3030. doi: 10.1002/anie.201700357. Epub 2017 Jan 31.
Much of the current understanding of thermal effects in biological systems is based on macroscopic measurements. There is little knowledge about the local thermostability or heat tolerance of subcellular components at the nanoscale. Herein, we show that gold nanorod-fluorescent nanodiamond (GNR-FND) hybrids are useful as a combined nanoheater/nanothermometer in living cells. With the use of a 594 nm laser for both heating and probing, we measure the temperature changes by recording the spectral shifts of the zero-phonon lines of negatively charged nitrogen-vacancy centers in FNDs. The technique allows us to determine the rupture temperatures of individual membrane nanotubes in human embryonic kidney cells, as well as to generate high temperature gradients on the cell membrane for photoporation and optically controlled hyperthermia. Our results demonstrate a new paradigm for hyperthermia research and application.
目前,人们对生物系统中热效应的理解主要基于宏观测量。对于纳米尺度下亚细胞成分的局部热稳定性或耐热性,人们知之甚少。本文中,我们展示了金纳米棒-荧光纳米金刚石(GNR-FND)杂化物可用作活细胞中的组合纳米加热器/纳米温度计。我们使用 594nm 激光进行加热和探测,通过记录 FND 中带负电荷的氮空位中心的零声子线的光谱位移来测量温度变化。该技术使我们能够确定人胚肾细胞中单个膜纳米管的破裂温度,以及在细胞膜上产生高温梯度以进行光穿孔和光控高热。我们的研究结果为高热疗研究和应用提供了新范例。